SWIG-3.0 Documentation

SWIG-3.0 Documentation

Table of Contents

SWIG-3.0 Documentation

e Sections
o SWIG Core Documentation
o Language Module Documentation
o Developer Documentation

1 Preface

e 1.1 Introduction

e 1.2 SWIG Versions

e 1.3 SWIG License

e 1.4 SWIG resources

e 1.5 Prerequisites

e 1.6 Organization of this manual
e 1.7 How to avoid reading the manual
L]
L]
L]
L]
L]

1.8 Backwards compatibility
1.9 Release notes

1.10 Credits
1.11 Bug reports
1.12 Installation
o 1.12.1 Windows installation
1.12.2 Unix installation
1.12.3 Macintosh OS X installation
1.12.4 Testing
1.12.5 Examples

o o0 o o

2 Introduction

2.1 What is SWIG?

2.2 Why use SWIG?

2.3 A SWIG example

2.3.1 SWIG interface file

2.3.2 The swig command

2.3.3 Building a Perl5 module
2.3.4 Building a Python module
2.3.5 Shortcuts

2.4 Supported C/C++ language features
2.5 Non-intrusive interface building

2.6 Incorporating SWIG into a build system

2.7 Hands off code generation
2.8 SWIG and freedom

e o
o

o
o
o
o

3 Getting started on Windows

e 3.1 Installation on Windows
o 3.1.1 Windows Executable
e 3.2 SWIG Windows Examples

o 3.2.1 Instructions for using the Examples with Visual Studio
32.1.1C#

3.2.1.2 Java
3.2.1.3 Perl
3.2.1.4 Python
3.2.1.7 Ruby
o 3.2.2 Instructions for using the Examples with other compilers
e 3.3 SWIG on Cygwin and MinGW
o 3.3.1 Building swig.exe on Windows
= 3.3.1.1 Building swig.exe using MinGW and MSYS
= 3.3.1.2 Building swig.exe using Cygwin
= 3.3.1.3 Building swig.exe alternatives
o 3.3.2 Running the examples on Windows using Cygwin
e 3.4 Microsoft extensions and other Windows quirks

SWIG-3.0 Documentation

4 Scripting Languages

e 4.1 The two language view of the world

e 4.2 How does a scripting language talk to C?
4.2.1 Wrapper functions

4.2.2 Variable linking

4.2.3 Constants

4.2.4 Structures and classes
o 4.2.5 Proxy classes
e 4.3 Building scripting language extensions
o 4.3.1 Shared libraries and dynamic loading
o 4.3.2 Linking with shared libraries
o 4.3.3 Static linking

o
o
o
o

5 SWIG Basics

e 5.1 Running SWIG
o 5.1.1 Input format
5.1.2 SWIG Output
5.1.3 Comments
5.1.4 C Preprocessor
5.1.5 SWIG Directives
5.1.6 Parser Limitations
e 5.2 Wrapping Simple C Declarations
5.2.1 Basic Type Handling
5.2.2 Global Variables
5.2.3 Constants
5.2.4 A brief word about const
o 5.2.5 A cautionary tale of char *
e 5.3 Pointers and complex objects
o 5.3.1 Simple pointers
o 5.3.2 Run time pointer type checking
o 5.3.3 Derived types, structs, and classes
o 5.3.4 Undefined datatypes
o 5.3.5 Typedef
e 5.4 Other Practicalities
o 5.4.1 Passing structures by value
o 5.4.2 Return by value
o 5.4.3 Linking to structure variables
© 5.4.4 Linking to char *
o 5.4.5 Arrays
o
o

o0 0 o o o

o o0 o o

5.4.6 Creating read-only variables
5.4.7 Renaming and ignoring declarations
= 5.4.7.1 Simple renaming of specific identifiers
m 5.4.7.2 Advanced renaming support
m 5.4.7.3 Limiting global renaming rules
® 5.4.7.4 Ignoring everything then wrapping a few selected symbols
o 5.4.8 Default/optional arguments
o 5.4.9 Pointers to functions and callbacks
e 5.5 Structures and unions
o 5.5.1 Typedef and structures
5.5.2 Character strings and structures
5.5.3 Array members
5.5.4 Structure data members
5.5.5 C constructors and destructors
5.5.6 Adding member functions to C structures
5.5.7 Nested structures
o 5.5.8 Other things to note about structure wrapping
e 5.6 Code Insertion
o 5.6.1 The output of SWIG
o 5.6.2 Code insertion blocks
o 5.6.3 Inlined code blocks
o 5.6.4 Initialization blocks
e 5.7 An Interface Building Strategy
o 5.7.1 Preparing a C program for SWIG
5.7.2 The SWIG interface file
5.7.3 Why use separate interface files?
5.7.4 Getting the right header files
5.7.5 What to do with main()

o
o
o
o
o
o

o
o
o
o

6 SWIG and C++

e 6.1 Comments on C++ Wrapping
e 6.2 Approach
e 6.3 Supported C++ features
e 6.4 Command line options and compilation
® 6.5 Proxy classes

o 6.5.1 Construction of proxy classes

o 6.5.2 Resource management in proxies

o 6.5.3 Language specific details

SWIG-3.0 Documentation

® 6.6 Simple C++ wrapping
o 6.6.1 Constructors and destructors
o 6.6.2 Default constructors, copy constructors and implicit destructors
o 6.6.3 When constructor wrappers aren't created
o 6.6.4 Copy constructors
o 6.6.5 Member functions
o 6.6.6 Static members
o 6.6.7 Member data
6.7 Default arguments
6.8 Protection
6.9 Enums and constants
6.10 Friends
6.11 References and pointers
6.12 Pass and return by value
6.13 Inheritance
6.14 A brief discussion of multiple inheritance, pointers, and type checking
6.15 Wrapping Overloaded Functions and Methods
o 6.15.1 Dispatch function generation
o 6.15.2 Ambiguity in Overloading
o 6.15.3 Ambiguity resolution and renaming
o 6.15.4 Comments on overloading
6.16 Wrapping overloaded operators
6.17 Class extension
6.18 Templates
6.19 Namespaces
o 6.19.1 The nspace feature for namespaces
6.20 Renaming templated types in namespaces
6.21 Exception specifications
6.22 Exception handling with %catches
6.23 Pointers to Members
6.24 Smart pointers and operator->()
6.25 C++ reference counted objects - ref/unref feature
6.26 Using declarations and inheritance
6.27 Nested classes

6.28 A brief rant about const-correctness
6.29 Where to go for more information

7 SWIG and C++11

e 7.1 Introduction
e 7.2 Core language changes
7.2.1 Rvalue reference and move semantics
7.2.2 Generalized constant expressions
7.2.3 Extern template
7.2.4 Initializer lists
7.2.5 Uniform initialization
7.2.6 Type inference
7.2.7 Range-based for-loop
7.2.8 Lambda functions and expressions
7.2.9 Alternate function syntax
7.2.10 Object construction improvement
7.2.11 Explicit overrides and final
7.2.12 Null pointer constant
7.2.13 Strongly typed enumerations
7.2.14 Double angle brackets
7.2.15 Explicit conversion operators
7.2.16 Alias templates
7.2.17 Unrestricted unions
7.2.18 Variadic templates
7.2.19 New string literals
7.2.20 User-defined literals
7.2.21 Thread-local storage
7.2.22 Explicitly defaulted functions and deleted functions
7.2.23 Type long long int
7.2.24 Static assertions
7.2.25 Allow sizeof to work on members of classes without an explicit object
7.2.26 Exception specifications and noexcept
7.2.27 Control and query object alignment
o 7.2.28 Attributes
e 7.3 Standard library changes
o 7.3.1 Threading facilities
o 7.3.2 Tuple types
o 7.3.3 Hash tables
o 7.3.4 Regular expressions
o 7.3.5 General-purpose smart pointers
o 7.3.6 Extensible random number facility
o
o
o
o

0O 0O 0O 0O 0O 0O0OOOOOO O OO0 O O 0O 0 0 0O o o o o o

7.3.7 Wrapper reference

7.3.8 Polymorphous wrappers for function objects

7.3.9 Type traits for metaprogramming

7.3.10 Uniform method for computing return type of function objects

SWIG-3.0 Documentation

8 Preprocessing

8.1 File inclusion
8.2 File imports
8.3 Conditional Compilation

L]
L]
L]
e 8.4 Macro Expansion
e 8.5 SWIG Macros

L]

L]

8.6 C99 and GNU Extensions
8.7 Preprocessing and delimiters
o 8.7.1 Preprocessing and %{ ... %} & " ... " delimiters
o 8.7.2 Preprocessing and { ... } delimiters
e 8.8 Preprocessor and Typemaps
e 8.9 Viewing preprocessor output
e 8.10 The #error and #warning directives

9 SWIG librar

e 9.1 The %include directive and library search path
e 9.2 C Arrays and Pointers

o 9.2.1 cpointer.i
© 9.2.2 carrays.i
o 9.2.3 cmalloc.i

o 9.2.4 cdata.i
e 9.3 C String Handling
o 9.3.1 Default string handling
o 9.3.2 Passing binary data
o 9.3.3 Using %newobject to release memory
o 9.3.4 cstring.i
9.4 STL/C++ Library
o 9.4.2 std::vector
o 9.4.3 STL exceptions
o 9.4.4 shared ptr smart pointer
o 9.4.5 auto_ptr smart pointer
e 9.5 Utility Libraries
o 9.5.1 exception.i

10 Argument Handling

e 10.1 The typemaps.i library
o 10.1.1 Introduction
o 10.1.2 Input parameters
o 10.1.3 Output parameters
o 10.1.4 Input/Output parameters
o 10.1.5 Using different names
e 10.2 Applying constraints to input values

o 10.2.1 Simple constraint example
o 10.2.2 Constraint methods

o 10.2.3 Applying constraints to new datatypes

11 Typemaps

e 11.1 Introduction
o 11.1.1 Type conversion
o 11.1.2 Typemaps
o 11.1.3 Pattern matching
o 11.1.4 Reusing typemaps
o 11.1.5 What can be done with typemaps?
o 11.1.6 What can't be done with typemaps?
o 11.1.7 Similarities to Aspect Oriented Programming
o 11.1.8 The rest of this chapter
e 11.2 Typemap specifications
11.2.1 Defining a typemap
11.2.2 Typemap scope
11.2.3 Copying a typemap
11.2.4 Deleting a typemap
o 11.2.5 Placement of typemaps
e 11.3 Pattern matching rules
o 11.3.1 Basic matching rules
11.3.2 Typedef reductions matching
11.3.3 Default typemap matching rules
11.3.4 Multi-arguments typemaps
11.3.5 Matching rules compared to C++ templates
© 11.3.6 Debugging typemap pattern matching
e 11.4 Code generation rules
11.4.1 Scope
o 11.4.2 Declaring new local variables
o 11.4.3 Special variables
o 11.4.4 Special variable macros
= 11.4.4.1 $descriptor(type)

o o0 o o

o o0 o o

o

SWIG-3.0 Documentation

m 11442 emap(method. epattern

o 11.4.5 Special variables and typemap attributes

o 11.4.6 Special variables combined with special variable macros
e 11.5 Common typemap methods

o 11.5.1"in" typemap

o 11.5.2 "typecheck" typemap

o 11.5.3 "out" typemap
o 11.5.4 "arginit" typemap
o 11.5.5 "default" typemap
o 11.5.6 "check" typemap
o 11.5.7 "argout" typemap
o 11.5.8 "freearg" typemap
o 11.5.9 "newfree" typemap
o 11.5.10 "memberin" typemap
o 11.5.11 "varin" typemap
o 11.5.12 "varout" typemap

o 11.5.13 "throws" typemap
e 11.6 Some typemap examples

o 11.6.1 Typemaps for arrays
o 11.6.2 Implementing constraints with typemaps

11.7 Typemaps for multiple target languages
11.8 Optimal code generation when returning by value
11.9 Multi-argument typemaps
11.10 Typemap warnings

11.11 Typemap fragments
o 11.11.1 Fragment type specialization

o 11.11.2 Fragments and automatic typemap specialization

e 11.12 The run-time type checker

o 11.12.1 Implementation

o 11.12.2 Usage
11.13 Typemaps and overloading
11.14 More about %apply and %clear
11.15 Passing data between typemaps
11.16 C++ "this" pointer

11.17 Where to go for more information?

12 Customization Features

e 12.1 Exception handling with %exception
o 12.1.1 Handling exceptions in C code
o 12.1.2 Exception handling with longjmp()
o 12.1.3 Handling C++ exceptions
o 12.1.4 Exception handlers for variables
o 12.1.5 Defining different exception handlers
o 12.1.6 Special variables for %exception
o 12.1.7 Using The SWIG exception library

e 12.2 Object ownership and %newobject
e 12.3 Features and the %feature directive

o 12.3.1 Feature attributes

o 12.3.2 Feature flags

o 12.3.3 Clearing features

o 12.3.4 Features and default arguments
o 12.3.5 Feature example

13 Contracts

13.1 The %contract directive
13.2 %contract and classes

13.3 Constant aggregation and %aggregate check
13.4 Notes

14 Variable Length Arguments

e 14.1 Introduction

e 14.2 The Problem

e 14.3 Default varargs support

e 14.4 Argument replacement using %varargs
® 14.5 Varargs and typemaps

® 14.6 Varargs wrapping with libffi

L]
L]
L]

14.7 Wrapping of va_list
14.8 C++ Issues

14.9 Discussion

15 Warning Messages

e 15.1 Introduction

e 15.2 Warning message suppression
e 15.3 Enabling extra warnings

e 15.4 Issuing a warning message

e 15.5 Symbolic symbols

e 15.6 Commentary

SWIG-3.0 Documentation

e 15.7 Warnings as errors

e 15.8 Message output format

e 15.9 Warning number reference
o 15.9.1 Deprecated features (100-199)
o 15.9.2 Preprocessor (200-299)
o 15.9.3 C/C++ Parser (300-399)
o 15.9.4 Types and typemaps (400-499)
o 15.9.5 Code generation (500-599)
o 15.9.6 Language module specific (700-899)
o 15.9.7 User defined (900-999)

e 15.10 History

16 Working with Modules

e 16.1 Modules Introduction

e 16.2 Basics

e 16.3 The SWIG runtime code

e 16.4 External access to the runtime

e 16.5 A word of caution about static libraries
e 16.6 References

L]

16.7 Reducing the wrapper file size
17 Using SWIG with ccache - ccache-swig(1) manpage

e 17.1NAME

e 17.2 SYNOPSIS

e 17.3 DESCRIPTION

e 17.4 OPTIONS SUMMARY

e 17.5 OPTIONS

e 17.6 INSTALLATION

e 17.7 EXTRA OPTIONS

e 17.8 ENVIRONMENT VARIABLES
e 17.9 CACHE SIZE MANAGEMENT
L]

L]

L]

L]

L]

L]

L]

L]

17.10 CACHE COMPRESSION

17.11 HOW IT WORKS

17.12 USING CCACHE WITH DISTCC

17.13 SHARING A CACHE

17.14 HISTORY

17.15 DIFFERENCES FROM COMPILERCACHE
17.16 CREDITS

17.17 AUTHOR

18 SWIG and Allegro Common Lisp

e 18.1 Basics
o 18.1.1 Running SWIG
o 18.1.2 Command Line Options
o 18.1.3 Inserting user code into generated files
e 18.2 Wrapping Overview
o 18.2.1 Function Wrapping
o 18.2.2 Foreign Wrappers
o 18.2.3 FFI Wrappers
o 18.2.4 Non-overloaded Defuns
o 18.2.5 Overloaded Defuns
o 18.2.6 What about constant and variable access?
o 18.2.7 Object Wrapping
e 18.3 Wrapping Details
o 18.3.1 Namespaces
o 18.3.2 Constants
o 18.3.3 Variables
o 18.3.4 Enumerations
o 18.3.5 Arrays
o 18.3.6 Classes and Structs and Unions (oh my!)

= 18.3.6.1 CLOS wrapping of
= 18.3.6.2 CLOS Inheritance

= 18.3.6.3 Member fields and functions

= 18.3.6.4 Why not directly access C++ classes using foreign types?
o 18.3.7 Templates

= 18.3.7.1 Generating wrapper code for templates

= 18.3.7.2 Implicit Template instantiation
o 18.3.8 Typedef. Templates, and Synonym Types

= 18.3.8.1 Choosing a prima e
o 18.3.9 Function overloading/Parameter defaulting
o 18.3.10 Operator wrapping and Operator overloading
o 18.3.11 Varargs
o
o

18.3.12 C++ Exceptions
18.3.13 Pass by value, pass by reference
e 18.4 Typemaps
o 18.4.1 Code Generation in the C++ Wrapper
= 184.1.1 IN Typemap

SWIG-3.0 Documentation

= 18.4.1.2 OUT Typemap

= 184.1.3 CTYPE Typemap
o 18.4.2 Code generation in Lisp wrappers
18.4.2.1 LIN Typemap

18.4.2.2 LOUT Typemap
18.4.2.3 FFITYPE Typemap

18.4.2.4 LISPTYPE Typemap
18.4.2.5 LISPCLASS Typemap
o 18.4.3 Modifying SWIG behavior using typemaps
e 18.5 Identifier Converter functions
o 18.5.1 Creating symbols in the lisp environment
o 18.5.2 Existing identifier-converter functions
= 18.5.2.1 identifier-convert-null
= 18.5.2.2 identifier-convert-lispify
= 18.5.2.3 Default identifier to symbol conversions
o 18.5.3 Defining your own identifier-converter
o 18.5.4 Instructing SWIG to use a particular identifier-converter

19 SWIG and Android

e 19.1 Overview

e 19.2 Android examples
o 19.2.1 Examples introduction
o 19.2.2 Simple C example
o 19.2.3 C++ class example

o 19.2.4 Other examples
e 193 C++STL

20 SWIG and C#

e 20.1 Introduction
o 20.1.1 SWIG 2 Compatibility
o 20.1.2 Additional command line options
20.2 Differences to the Java module
20.3 Void pointers
20.4 C# Arrays
o 20.4.1 The SWIG C arrays library
o 20.4.2 Managed arrays using P/Invoke default array marshalling
o 20.4.3 Managed arrays using pinning
20.5 C# Exceptions
o 20.5.1 C# exception example using "check" typemap
o 20.5.2 C# exception example using %exception
o 20.5.3 C# exception example using exception specifications
o 20.5.4 Custom C# ApplicationException example
20.6 C# Directors
o 20.6.1 Directors example
o 20.6.2 Directors implementation
o 20.6.3 Director caveats
20.7 Multiple modules
20.8 C# Typemap examples
o 20.8.1 Memory management when returning references to member variables
o 20.8.2 Memory management for objects passed to the C++ layer
o 20.8.3 Date marshalling using the csin typemap and associated attributes
o 20.8.4 A date example demonstrating marshalling of C# properties
o 20.8.5 Date example demonstrating the 'pre' and 'post' typemap attributes for directors
o
o
o

20.8.6 Turning wrapped classes into partial classes
20.8.7 Extending proxy classes with additional C# code
20.8.8 Underlying type for enums

21 SWIG and Chicken

e 21.1 Preliminaries

o 21.1.1 Running SWIG in C mode
o 21.1.2 Running SWIG in C++ mode
21.2 Code Generation
o 21.2.1 Naming Conventions
21.2.2 Modules
21.2.3 Constants and Variables
21.2.4 Functions
21.2.5 Exceptions
21.3 TinyCLOS
21.4 Linkage
o 21.4.1 Static binary or shared library linked at compile time
o 21.4.2 Building chicken extension libraries
o 21.4.3 Linking multiple SWIG modules with TinyCLOS
21.5 Typemaps
21.6 Pointers
o 21.6.1 Garbage collection
21.7 Unsupported features and known problems
o 21.7.1 TinyCLOS problems with Chicken version <= 1.92

o
o
o
o

SWIG-3.0 Documentation

22 SWIG and D

22.1 Introduction
22.2 Command line invocation
22.3 Typemaps
22.3.1 C# <-> D name comparison
22.3.2 ctype. imtype. dtype
22.3.3 in, out, directorin, directorout
22.3.4 din, dout, ddirectorin, ddirectorout
22.3.5 typecheck typemaps
22.3.6 Code injection typemaps
o 22.3.7 Special variable macros
22.4 D and %feature
22.5 Pragmas

22.6 D Exceptions
22.7 D Directors

22.8 Other features
o 22.8.1 Extended namespace support (nspace)
o 22.8.2 Native pointer support
o 22.8.3 Operator overloading
o 22.8.4 Running the test-suite
22.9 D Typemap examples
22.10 Work in progress and planned features

o
o
o
o
o
o

23 SWIG and Go

23.1 Overview

23.2 Examples

23.3 Running SWIG with Go
o 23.3.1 Go-specific Commandline Options
o 23.3.2 Generated Wrapper Files

23.4 A tour of basic C/C++ wrapping

o 23.4.1 Go Package Name
23.4.2 Go Names

23.4.3 Go Constants
23.4.4 Go Enumerations
23.4.5 Go Classes
= 23.4.5.1 Go Class Memory Management
m 23.4.5.2 Go Class Inheritance
o 23.4.6 Go Templates
o 23.4.7 Go Director Classes
= 23.4.7.1 Example C++ code
23.4.7.2 Enable director feature
23.4.7.3 Constructor and destructor
23.4.7.4 Override virtual methods
23.4.7.5 Call base methods
23.4.7.6 Subclass via embedding
23.4.7.7 Memory management with runtime.SetFinalizer
= 23.4.7.8 Complete FooBarGo example class
23.4.8 Default Go primitive type mappings
23.4.9 Output arguments
23.4.10 Adding additional go code
23.4.11 Go typemaps

o
o
o
o

o o0 o o

24 SWIG and Guile

24.1 Supported Guile Versions
24.2 Meaning of "Module"
24.3 Old GH Guile API
24.4 Linkage
o 24.4.1 Simple Linkage
o 24.4.2 Passive Linkage
o 24.4.3 Native Guile Module Linkage
o 24.4.4 Old Auto-Loading Guile Module Linkage
o 24.4.5 Hobbit4D Linkage

e 24.5 Underscore Folding
e 24.6 Typemaps

24.7 Representation of pointers as smobs
o 24.7.1 Smobs
o 24.7.2 Garbage Collection

24.8 Exception Handling
24.9 Procedure documentation

24.10 Procedures with setters
24.11 GOOPS Proxy Classes
o 24.11.1 Naming Issues
o 24.11.2 Linking

25 SWIG and Java

25.1 Overview

SWIG-3.0 Documentation

e 25.2 Preliminaries
o 25.2.1 Running SWIG
o 25.2.2 Additional Commandline Options
o 25.2.3 Getting the right header files
o 25.2.4 Compiling a dynamic module
o 25.2.5 Using your module
o 25.2.6 Dynamic linking problems
o 25.2.7 Compilation problems and compiling with C++
o 25.2.8 Building on Windows
= 25.2.8.1 Running SWIG from Visual Studio
= 25.2.8.2 Using NMAKE
e 25.3 A tour of basic C/C++ wrapping

o 25.3.1 Modules, packages and generated Java classes
25.3.2 Functions

25.3.3 Global variables

25.3.4 Constants

25.3.5 Enumerations
= 25.3.5.1 Anonymous enums
= 25.3.5.2 Typesafe enums
= 25.3.5.3 Proper Java enums
= 25.3.5.4 Type unsafe enums

= 25.3.5.5 Simple enums
25.3.6 Pointers

25.3.7 Structures
25.3.8 C++ classes
25.3.9 C++ inheritance
25.3.10 Pointers, references, arrays and pass by value

= 25.3.10.1 Null pointers
25.3.11 C++ overloaded functions
25.3.12 C++ default arguments
25.3.13 C++ namespaces
25.3.14 C++ templates
25.3.15 C++ Smart Pointers

m 25.3.15.1 The shared ptr Smart Pointer

m 25.3.15.2 Generic Smart Pointers
e 25.4 Further details on the generated Java classes

o 25.4.1 The intermediary JNI class
m 25.4.1.1 The intermediary JNI class pragmas
o 25.4.2 The Java module class

m 25.4.2.1 The Java module class pragmas
25.4.3 Java proxy classes

= 25.4.3.1 Memory management
25.4.3.2 Inheritance
25.4.3.3 Proxy classes and garbage collection
25.4.3.4 The premature garbage collection prevention parameter for proxy class marshalling
25.4.3.5 Single threaded applications and thread safety
25.4.4 Type wrapper classes
25.4.5 Enum classes

m 25.4.5.1 Typesafe enum classes

= 25.4.5.2 Proper Java enum classes

= 25.4.5.3 Type unsafe enum classes
25.5 Cross language polymorphism using directors

o 25.5.1 Enabling directors
25.5.2 Director classes

o

o 25.5.3 Overhead and code bloat
o 25.5.4 Simple directors example
o
o

o
o
o
o

o0 0 o o o

o0 0 o o o

o

o o

25.5.5 Director threading issues
25.5.6 Director performance tuning

o 25.5.7 Java exceptions from directors
25.6 Accessing protected members
25.7 Common customization features

o 25.7.1 C/C++ helper functions

o 25.7.2 Class extension with %extend

o 25.7.3 Exception handling with %exception and %javaexception

o 25.7.4 Method access with %javamethodmodifiers
e 25.8 Tips and techniques

o 25.8.1 Input and output parameters using primitive pointers and references

o 25.8.2 Simple pointers

o 25.8.3 Wrapping C arrays with Java arrays

o 25.8.4 Unbounded C Arrays

o 25.8.5 Binary data vs Strings

o 25.8.6 Overriding new and delete to allocate from Java heap
25.9 Java typemaps
o
o
o
o
o
o

25.9.1 Default primitive type mappings

25.9.2 Default typemaps for non-primitive types

25.9.3 Sixty four bit JVMs

25.9.4 What is a typemap?

25.9.5 Typemaps for mapping C/C++ types to Java types
25.9.6 Java typemap attributes

o o0 o o

SWIG-3.0 Documentation

25.9.7 Java special variables

25.9.8 Typemaps for both C and C++ compilation
25.9.9 Java code typemaps

25.9.10 Director specific typemaps

e 25.10 Typemap Examples

0O 0 0O 0O 0O 0O 0O 0 0 0 0 ©°

o

25.10.1 Simpler Java enums for enums without initializers

25.10.2 Handling C++ exception specifications as Java exceptions

25.10.3 NaN Exception - exception handling for a particular type

25.10.4 Converting Java String arrays to char **

25.10.5 Expanding a Java object to multiple arguments

25.10.6 Using typemaps to return arguments

25.10.7 Adding Java downcasts to polymorphic return types

25.10.8 Adding an equals method to the Java classes

25.10.9 Void pointers and a common Java base class
25.10.10 Struct pointer to pointer

25.10.11 Memory management when returning references to member variables
25.10.12 Memory management for objects passed to the C++ layer

25.10.13 Date marshalling using the javain typemap and associated attributes

e 25.11 Living with Java Directors
e 25.12 Odds and ends

25.12.1 JavaDoc comments

25.12.2 Functional interface without proxy classes
25.12.3 Using your own JNI functions
25.12.4 Performance concerns and hints

25.12.5 Debuggin

e 25.13 Java Examples

26 SWIG and Javascript

e 26.1 Overview
e 26.2 Preliminaries

o
o
o

26.2.1 Running SWIG

26.2.2 Running Tests and Examples
26.2.3 Known Issues

e 26.3 Integration

o

o

o

26.3.1 Creating node.js Extensions

= 26.3.1.1 Troubleshooting
26.3.2 Embedded Webkit

= 26.3.2.1 Mac OS X
= 263.2.2 GTK

26.3.3 Creating Applications with node-webkit

® 26.4 Examples

o
o

o

o
o
o
o

26.4.1 Simple
26.4.2 Class

26.5 Implementation

26.5.1 Source Code

26.5.2 Code Templates
26.5.3 Emitter

26.5.4 Emitter states
26.5.5 Handling Exceptions in JavascriptCore

27 SWIG and Common Lisp

e 27.4 UFFI

o
o
o
o

o
o

28 SWIG and Lua

27.1 Allegro Common Lisp
27.2 Common Foreign Function Interface(CFFI)

27.2.1 Additional Commandline Options
27.2.2 Generating CFFI bindings

27.2.3 Generating CFFI bindings for C++ code
27.2.4 Inserting user code into generated files

27.3 CLISP

27.3.1 Additional Commandline Options
27.3.2 Details on CLISP bindings

e 28.1 Preliminaries
e 28.2 Running SWIG

o
o
o
o

28.2.1 Additional command line options
28.2.2 Compiling and Linking and Interpreter
28.2.3 Compiling a dynamic module

28.2.4 Using your module

e 28.3 A tour of basic C/C++ wrapping

o

o
o
o

28.3.1 Modules
28.3.2 Functions
28.3.3 Global variables
28.3.4 Constants and enums
= 28.3.4.1 Constants/enums and classes/structures

28.3.5 Pointers
28.3.6 Structures

10

SWIG-3.0 Documentation

28.3.7 C++ classes
28.3.8 C++ inheritance
28.3.9 Pointers, references, values, and arrays
28.3.10 C++ overloaded functions
28.3.11 C++ operators
28.3.12 Class extension with %extend
28.3.13 Using %newobject to release memory
28.3.14 C++ templates
28.3.15 C++ Smart Pointers
28.3.16 C++ Exceptions
28.3.17 Namespaces
= 28.3.17.1 Compatibility Note
= 28.3.17.2 Names
= 28.3.17.3 Inheritance

0O 0 0 0 0O 0O 0O 0 0 0 o

e 28.4 Typemaps
o 28.4.1 What is a typemap?
o 28.4.2 Using typemaps
o 28.4.3 Typemaps and arrays
o 28.4.4 Typemaps and pointer-pointer functions
28.5 Writing typemaps
o 28.5.1 Typemaps you can write
o 28.5.2 SWIG's Lua-C API
e 28.6 Customization of your Bindings
o 28.6.1 Writing your own custom wrappers
o 28.6.2 Adding additional Lua code
28.7 Details on the Lua binding
o 28.7.1 Binding global data into the module.
o 28.7.2 Userdata and Metatables
o 28.7.3 Memory management

29 SWIG and Modula-3

e 29.1 Overview
o 29.1.1 Motivation

e 29.2 Conception

o 29.2.1 Interfaces to C libraries

o 29.2.2 Interfaces to C++ libraries
29.3 Preliminaries

o 29.3.1 Compilers

o 29.3.2 Additional Commandline Options
29.4 Modula-3 typemaps

o 29.4.1 Inputs and outputs
29.4.2 Subranges, Enumerations, Sets
29.4.3 Objects
29.4.4 Imports
29.4.5 Exceptions

o 29.4.6 Example
29.5 More hints to the generator

o 29.5.1 Features

o 29.5.2 Pragmas
e 20.6 Remarks

o
o
o
o

30 SWIG and MzScheme/Racket

e 30.1 Creating native structures

e 30.2 Simple example
e 30.3 External documentation

31 SWIG and Ocaml

e 31.1 Preliminaries
o 31.1.1 Running SWIG
31.1.2 Compiling the code
31.1.3 The camlp4 module
31.1.4 Using your module
31.1.5 Compilation problems and compiling with C++
e 31.2 The low-level Ocaml/C interface
o 31.2.1 The generated module
o 31.2.2 Enums
= 31.2.2.1 Enum typing in Ocaml
o 31.2.3 Arrays
= 31.2.3.1 Simple types of bounded arrays
= 31.2.3.2 Complex and unbounded arrays
= 31.2.3.3 Using an object
= 31.2.3.4 Example typemap for a function taking float * and int
o 31.2.4 C++ Classes
= 31.2.4.1 STL vector and string Example
= 31.2.4.2 C++ Class Example
= 31.2.4.3 Compiling the example
= 31.2.4.4 Sample Session

o
o
o
o

SWIG-3.0 Documentation

o 31.2.5 Director Classes

= 31.2.5.1 Director Introduction

31.2.5.2 Overriding Methods in Ocaml

31.2.5.3 Director Usage Example

31.2.5.4 Creating director objects

31.2.5.5 Typemaps for directors, directorin, directorout, directorargout
31.2.5.6 typemap

31.2.5.7 directorout typemap

= 31.2.5.8 directorargout typemap

o 31.2.6 Exceptions

32 SWIG and Octave

32.1 Preliminaries

e 32.2 Running SWIG

o 32.2.1 Command-line options

o 32.2.2 Compiling a dynamic module
o 32.2.3 Using your module

e 32.3 A tour of basic C/C++ wrapping
o 32.3.1 Modules

32.3.3 Global variables

32.3.4 Constants and enums
32.3.5 Pointers

32.3.6 Structures and C++ classes

32.3.8 C++ overloaded functions
32.3.9 C++ operators
32.3.10 Class extension with %extend

32.3.11 C++ templates
32.3.12 C++ Smart Pointers

o0 0 o o o

33 SWIG and Perl5

33.1 Overview
33.2 Preliminaries

o
o
o
o
o
o 32.3.7 C++ inheritance
o
o
o
o
o

= 32.3.12.1 The shared ptr Smart Pointer
= 32.3.12.2 Generic Smart Pointers

32.3.13 Directors (calling Octave from C++ code)
32.3.14 Threads

32.3.15 Memory management

32.3.16 STL support

32.3.17 Matrix typemaps

o 33.2.1 Getting the right header files
33.2.2 Compiling a dynamic module
33.2.3 Building a dynamic module with MakeMaker

33.2.5 Using the module

o
o
o 33.2.4 Building a static version of Perl
o
o

33.2.6 Compilation problems and compiling with C++
o 33.2.7 Compiling for 64-bit platforms
33.3 Building Perl Extensions under Windows
o 33.3.1 Running SWIG from Developer Studio

o 33.3.2 Using other compilers
33.4 The low-level interface

o 33.4.1 Functions

o
o
o
o
o
o
o
o

33.4.2 Global variables

33.4.3 Constants

33.4.4 Pointers

33.4.5 Structures

33.4.6 C++ classes

33.4.7 C++ classes and type-checking
33.4.8 C++ overloaded functions

33.4.9 Operators

o 33.4.10 Modules and packages
33.5 Input and output parameters
33.6 Exception handling
33.7 Remapping datatypes with typemaps
o 33.7.1 A simple typemap example
o 33.7.2 Perl5 typemaps
o 33.7.3 Typemap variables
o 33.7.4 Useful functions
33.8 Typemap Examples
o 33.8.1 Converting a PerlS array to a char **

o
o
o
o

33.8.2 Return values

33.8.3 Returning values from arguments
33.8.4 Accessing array structure members
33.8.5 Turning Perl references into C pointers

o 33.8.6 Pointer handling

33.9 Proxy classes

o 33.9.1 Preliminaries

12

o
o
o
o
o

o

SWIG-3.0 Documentation

33.9.2 Structure and class wrappers
33.9.3 Object Ownershi
33.9.4 Nested Objects

33.9.5 Proxy Functions
33.9.6 Inheritance

33.9.7 Modifying the proxy methods

e 33.10 Adding additional Perl code
e 33.11 Cross language polymorphism

o
o
o
o
o
o

34 SWIG and PHP

33.11.1 Enabling directors

33.11.2 Director classes

33.11.3 Ownership and object destruction
33.11.4 Exception unrolling

33.11.5 Overhead and code bloat

33.11.6 Typemaps

e 34.1 Generating PHP Extensions

o
o

34.1.1 Building a loadable extension
34.1.2 Using PHP Extensions

e 34.2 Basic PHP interface

o

o
o
o
o
o

o

34.2.1 Constants
34.2.2 Global Variables
34.2.3 Functions
34.2.4 Overloading
34.2.5 Pointers and References
34.2.6 Structures and C++ classes
= 34.2.6.1 Using -noproxy
= 34.2.6.2 Constructors and Destructors
= 34.2.6.3 Static Member Variables
m 34.2.6.4 Static Member Functions
m 34.2.6.5 Specifying Implemented Interfaces
34.2.7 PHP Pragmas, Startup and Shutdown code

e 34.3 Cross language polymorphism

o
o
o
o
o
o
o

35 SWIG and Pike

34.3.1 Enabling directors

34.3.2 Director classes

34.3.3 Ownership and object destruction
34.3.4 Exception unrolling

34.3.5 Overhead and code bloat

34.3.6 Typemaps
34.3.7 Miscellaneous

e 35.1 Preliminaries

o
o
o

35.1.1 Running SWIG
35.1.2 Getting the right header files
35.1.3 Using your module

e 35.2 Basic C/C++ Mapping

o

o
o
o
o
o

35.2.1 Modules

35.2.2 Functions

35.2.3 Global variables

35.2.4 Constants and enumerated types
35.2.5 Constructors and Destructors
35.2.6 Static Members

36 SWIG and Python

e 36.1 Overview
e 36.2 Preliminaries

o
o
o
o
o
o
o

o

36.2.1 Running SWIG

36.2.2 Using distutils

36.2.3 Hand compiling a dynamic module

36.2.4 Static linking

36.2.5 Using your module

36.2.6 Compilation of C++ extensions

36.2.7 Compiling for 64-bit platforms

36.2.8 Building Python Extensions under Windows

e 36.3 A tour of basic C/C++ wrapping

o

0O 0O 0 0O 0O 0O 0O 0 0 o

36.3.1 Modules

36.3.2 Functions

36.3.3 Global variables

36.3.4 Constants and enums

36.3.5 Pointers

36.3.6 Structures

36.3.7 C++ classes

36.3.8 C++ inheritance

36.3.9 Pointers, references, values, and arrays
36.3.10 C++ overloaded functions

36.3.11 C++ operators

13

SWIG-3.0 Documentation

o 36.3.12 C++ namespaces

o 36.3.13 C++ templates

o 36.3.14 C++ Smart Pointers

® 36.3.14.1 The shared ptr Smart Pointer
= 36.3.14.2 Generic Smart Pointers

o 36.3.15 C++ reference counted objects

36.4 Further details on the Python class interface

o 36.4.1 Proxy classes
o 36.4.2 Built-in Types
® 36.4.2.1 Limitations
= 36.4.2.2 Operator overloads -- use them!
o 36.4.3 Memory management
o 36.4.4 Python 2.2 and classic classes
® 36.5 Cross language polymorphism
o 36.5.1 Enabling directors
36.5.2 Director classes

36.5.3 Ownership and object destruction

36.5.5 Overhead and code bloat

o
o
o 36.5.4 Exception unrolling
o
o

36.5.6 Typemaps
o 36.5.7 Miscellaneous

36.6 Common customization features

o 36.6.1 C/C++ helper functions

o 36.6.2 Adding additional Python code

o 36.6.3 Class extension with %extend

o 36.6.4 Exception handling with %exception
e 36.7 Tips and techniques

o 36.7.1 Input and output parameters

o
o
o
o

® 36.8 Typemaps

36.7.2 Simple pointers
36.7.3 Unbounded C Arrays
36.7.4 String handling
36.7.5 Default arguments

o 36.8.1 What is a typemap?
o 36.8.2 Python typemaps
o 36.8.3 Typemap variables
o 36.8.4 Useful Python Functions
e 36.9 Typemap Examples
36.9.1 Converting Python list to a char **
36.9.2 Expanding a Python object into multiple arguments

36.9.4 Mapping Python tuples into small arrays

o
o
o 36.9.3 Using typemaps to return arguments
o
o

36.9.5 Mapping sequences to C arrays
o 36.9.6 Pointer handling
e 36.10 Docstring Features
o 36.10.1 Module docstring
o 36.10.2 %feature("autodoc")

o 36.10.3 %feature("docstring")

36.11 Python Packages

© 36.11.1 Setting the Python package

o 36.11.2 Absolute and relative imports

o 36.11.3 Enforcing absolute import semantics
o 36.11.4 Importing from __init _.py

36.12 Python 3 Support

o 36.12.1 Function annotation

o
o
o
o

37 SWIG and R

37.1 Bugs

37.6 C++ classes

38 SWIG and Ruby

e 38.1 Preliminaries

37.7 Enumerations

36.12.2 Buffer interface

36.12.3 Abstract base classes
36.12.4 Byte string output conversion
36.12.5 Python 2 Unicode

37.2 Using R and SWIG

37.3 Precompiling large R files
37.4 General policy
37.5 Language conventions

o 38.1.1 Running SWIG
o 38.1.2 Getting the right header files

14

o o o

o

38.1.3 Compiling a dynamic module
38.1.4 Using your module

38.1.5 Static linking

38.1.6 Compilation of C++ extensions

e 38.2 Building Ruby Extensions under Windows 95/NT

o

38.2.1 Running SWIG from Developer Studio

e 38.3 The Ruby-to-C/C++ Mapping

0O 0O 0O 0O 0O OO 0O OOOO 0 O 0 o

o

o
o
o
o

o
o
o
o

38.3.1 Modules
38.3.2 Functions
38.3.3 Variable Linking
38.3.4 Constants
38.3.5 Pointers
38.3.6 Structures
38.3.7 C++ classes
38.3.8 C++ Inheritance
38.3.9 C++ Overloaded Functions
38.3.10 C++ Operators
38.3.11 C++ namespaces
38.3.12 C++ templates
38.3.13 C++ Standard Template Library (STL
38.3.14 C++ STL Functors
38.3.15 C++ STL Iterators
38.3.16 C++ Smart Pointers
= 38.3.16.1 The shared ptr Smart Pointer
= 38.3.16.2 Generic Smart Pointers
38.3.17 Cross-Language Polymorphism
= 38.3.17.1 Exception Unrolling

38.4 Namin

38.4.1 Defining Aliases
38.4.2 Predicate Methods

38.4.3 Bang Methods
38.4.4 Getters and Setters

38.5 Input and output parameters
38.6 Exception handling

38.6.1 Using the %exception directive
38.6.2 Handling Ruby Blocks

38.6.3 Raising exceptions

38.6.4 Exception classes

e 38.7 Typemaps

o
o
o
o
o
o

38.7.1 What is a typemap?
38.7.2 Typemap scope
38.7.3 Copying a typemap
38.7.4 Deleting a typemap
38.7.5 Placement of typemaps
38.7.6 Ruby typemaps
= 38.7.6.1 "in" typemap
= 38.7.6.2 "typecheck" typemap
= 38.7.6.3 "out" typemap
= 38.7.6.4 "arginit" typemap
= 38.7.6.5 "default" typemap
= 38.7.6.6 "check" typemap
® 38.7.6.7 "argout" typemap
= 38.7.6.8 "freearg" typemap
= 38.7.6.9 "newfree" typemap
= 38.7.6.10 "memberin" typemap
= 38.7.6.11 "varin" typemap
= 38.7.6.12 "varout" typemap
= 38.7.6.13 "throws" typemap
= 38.7.6.14 directorin typemap
= 38.7.6.15 directorout typemap
= 38.7.6.16 directorargout typemap
m 38.7.6.17 ret typemap
= 38.7.6.18 globalin typemap

o 38.7.7 Typemap variables

o o0 o o

o

38.7.8 Useful Functions

= 38.7.8.1 C Datatypes to Ruby Objects
38.7.8.2 Ruby Objects to C Datatypes
38.7.8.3 Macros for VALUE
38.7.8.4 Exceptions
38.7.8.5 Iterators
38.7.9 Typemap Examples
38.7.10 Converting a Ruby array to a char **
38.7.11 Collecting arguments in a hash
38.7.12 Pointer handling

= 38.7.12.1 Ruby Datatype Wrapping
38.7.13 Example: STL Vector to Ruby Array

e 38.8 Docstring Features

o
o

38.8.1 Module docstring
38.8.2 %feature("autodoc")

SWIG-3.0 Documentation

15

o

SWIG-3.0 Documentation

e 38.9 Advanced Topics

o
o
o

38.9.1 Operator overloading
38.9.2 Creating Multi-Module Packages
38.9.3 Specifying Mixin Modules

e 38.10 Memory Management

o

o
o
o
o
o

39 SWIG and Scilab

38.10.1 Mark and Sweep Garbage Collector
38.10.2 Object Ownership

38.10.3 Object Tracking
38.10.4 Mark Functions

38.10.5 Free Functions
38.10.6 Embedded Ruby and the C++ Stack

e 39.1 Preliminaries
e 39.2 Running SWIG

o
o
o
o
o

39.2.1 Generating the module
39.2.2 Building the module

39.2.3 Loading the module

39.2.4 Using the module

39.2.5 Scilab command line options

e 39.3 A basic tour of C/C++ wrapping

o
o
o

39.3.1 Overview
39.3.2 Identifiers
39.3.3 Functions

= 39.3.3.1 Argument passing
= 39.3.3.2 Multiple output arguments

o 39.3.4 Global variables

0 0 0 0 0o 0O 0 0 o

39.3.5 Constants and enumerations
= 39.3.5.1 Constants
= 39.3.5.2 Enumerations
39.3.6 Pointers

= 39.3.6.1 Utility functions

= 39.3.6.2 Null pointers
39.3.7 Structures

39.3.8 C++ classes

39.3.9 C++ inheritance

39.3.10 Pointers, references, values, and arrays
39.3.11 C++ templates

39.3.12 C++ operators

39.3.13 C++ namespaces

39.3.14 C++ exceptions
39.3.15 C++ STL

e 39.4 Type mappings and libraries

o0 0 o o o

o

L]
L]
o
o
L]
o
o
L]

40 SWIG and Tel

39.4.1 Default primitive type mappings

39.4.2 Default type mappings for non-primitive types
39.4.3 Arrays

39.4.4 Pointer-to-pointers

39.4.5 Matrices

39.4.6 STL

39.5 Module initialization
39.6 Building modes

39.6.1 No-builder mode
39.6.2 Builder mode

39.7 Generated scripts

39.7.1 Builder script
39.7.2 Loader script

39.8 Other resources

e 40.1 Preliminaries

o
o
o
o
o
o
o

o

40.1.1 Getting the right header files
40.1.2 Compiling a dynamic module
40.1.3 Static linking

40.1.4 Using your module

40.1.5 Compilation of C++ extensions
40.1.6 Compiling for 64-bit platforms
40.1.7 Setting a package prefix

40.1.8 Using namespaces

e 40.2 Building Tcl/Tk Extensions under Windows 95/NT

o
o

40.2.1 Running SWIG from Developer Studio
40.2.2 Using NMAKE

e 40.3 A tour of basic C/C++ wrapping

16

SWIG-3.0 Documentation

40.3.1 Modules

40.3.2 Functions

40.3.3 Global variables

40.3.4 Constants and enums
40.3.5 Pointers

40.3.6 Structures

40.3.7 C++ classes

40.3.8 C++ inheritance

40.3.9 Pointers. references, values, and arrays
40.3.10 C++ overloaded functions
40.3.11 C++ operators

40.3.12 C++ namespaces

40.3.13 C++ templates
40.3.14 C++ Smart Pointers

® 40.4 Further details on the Tcl class interface
o 40.4.1 Proxy classes
o 40.4.2 Memory management
40.5 Input and output parameters
40.6 Exception handling
40.7 Typemaps
o 40.7.1 What is a typemap?
o 40.7.2 Tcl typemaps
o 40.7.3 Typemap variables
o 40.7.4 Converting a Tcl list to a char **
o
o
o

o
o
o
o
o
o
o
o
o
o
o
o
o
o

40.7.5 Returning values in arguments
40.7.6 Useful functions
40.7.7 Standard typemaps
o 40.7.8 Pointer handling
e 40.8 Turning a SWIG module into a Tcl Package.
® 40.9 Building new kinds of Tcl interfaces (in Tcl)

o 40.9.1 Proxy classes
e 40.10 Tcl/Tk Stubs

41 Extending SWIG to support new languages

41.1 Introduction

41.2 Prerequisites
41.3 The Big Picture
41.4 Execution Model
o 41.4.1 Preprocessing
41.4.2 Parsing
41.4.3 Parse Trees
41.4.4 Attribute namespaces

41.4.5 Symbol Tables
41.4.6 The %feature directive

41.4.7 Code Generation
o 41.4.8 SWIG and XML

e 41.5 Primitive Data Structures
o 41.5.1 Strings

41.5.2 Hashes

41.5.3 Lists

41.5.4 Common operations

41.5.5 Tterating over Lists and Hashes
o 41.5.61/0

e 41.6 Navigating and manipulating parse trees

e 41.7 Working with attributes

e 41.8 Type system
o 41.8.1 String encoding of types
o 41.8.2 Type construction
o 41.8.3 Type tests
o
o

o
o
o
o
o
o

o
o
o
o

41.8.4 Typedef and inheritance
41.8.5 Lvalues

o 41.8.6 Output functions
® 41.9 Parameters
e 41.10 Writing a Language Module
o 41.10.1 Execution model
o 41.10.2 Starting out
o 41.10.3 Command line options
o 41.10.4 Configuration and preprocessing
o 41.10.5 Entry point to code generation
© 41.10.6 Module I/O and wrapper skeleton
o 41.10.7 Low-level code generators
© 41.10.8 Configuration files
o 41.10.9 Runtime support
© 41.10.10 Standard library files
o 41.10.11 User examples
o 41.10.12 Test driven development and the test-suite
= 41.10.12.1 Running the test-suite
o 41.10.13 Documentation

o 41.10.14 Prerequisites for adding a new language module to the SWIG distribution

o 41.10.15 Coding style guidelines

e 41.11 Debugging Options
e 41.12 Guide to parse tree nodes

e 41.13 Further Development Information

SWIG-3.0 Documentation

SWIG-3.0 Documentation

Last update : SWIG-3.0.8 (31 Dec 2015)

Sections

SWIG Core Documentation

Preface

Introduction

Getting started on Windows
Scripting

SWIG Basics (Read this!)
SWIG and C++

SWIG and C++11

The SWIG preprocessor
The SWIG library
Argument handling
Typemaps

Customization features
Contracts

Variable length arguments
Warning messages
Working with Modules
Using SWIG with ccache

Language Module Documentation

Allegro Common Lisp support
Android support

C# support

Chicken support

D support

Go support

Guile support

Java support
Javascript support
Common Lisp support
Lua support

Modula3 support
MzScheme/Racket support
Ocaml support
Octave support

Perl5 support

PHP support

Pike support

Python support

R support

Ruby support

Scilab support

Tcl support

Developer Documentation

e Extending SWIG

1 Preface

Sections

Introduction

SWIG Versions

SWIG License

SWIG resources

Prerequisites

Organization of this manual
How to avoid reading the manual

Backwards compatibility
Release notes

Credits

18

SWIG-3.0 Documentation

® Bug reports
e Installation
o Windows installation
Unix installation
Macintosh OS X installation
Testing

o
o
o
o Examples

1.1 Introduction

SWIG (Simplified Wrapper and Interface Generator) is a software development tool for building scripting language interfaces to C and C++ programs. Originally
developed in 1995, SWIG was first used by scientists in the Theoretical Physics Division at Los Alamos National Laboratory for building user interfaces to
simulation codes running on the Connection Machine 5 supercomputer. In this environment, scientists needed to work with huge amounts of simulation data,
complex hardware, and a constantly changing code base. The use of a scripting language interface provided a simple yet highly flexible foundation for solving
these types of problems. SWIG simplifies development by largely automating the task of scripting language integration--allowing developers and users to focus
on more important problems.

Although SWIG was originally developed for scientific applications, it has since evolved into a general purpose tool that is used in a wide variety of applications-
-in fact almost anything where C/C++ programming is involved.

1.2 SWIG Versions

In the late 1990's, the most stable version of SWIG was release 1.1p5. Versions 1.3.x were officially development versions and these were released over a period
of 10 years starting from the year 2000. The final version in the 1.3.x series was 1.3.40, but in truth the 1.3.x series had been stable for many years. An official
stable version was released along with the decision to make SWIG license changes and this gave rise to version 2.0.0 in 2010.

1.3 SWIG License

The LICENSE file shipped with SWIG in the top level directory contains the SWIG license. For further insight into the license including the license of SWIG's
output code, please visit the SWIG legal page - http:/www.swig.org/legal.html.

The license was clarified in version 2.0.0 so that the code that SWIG generated could be distributed under license terms of the user's choice/requirements and at
the same time the SWIG source was placed under the GNU General Public License version 3.

1.4 SWIG resources

The official location of SWIG related material is

http://www.swig.org

This site contains the latest version of the software, users guide, and information regarding bugs, installation problems, and implementation tricks.

You can also subscribe to the swig-user mailing list by visiting the page

http://www.swig.org/mail.html

The mailing list often discusses some of the more technical aspects of SWIG along with information about beta releases and future work.

Git and Subversion access to the latest version of SWIG is also available. More information about this can be obtained at:

SWIG Bleeding Edge

1.5 Prerequisites

This manual assumes that you know how to write C/C++ programs and that you have at least heard of scripting languages such as Tcl, Python, and Perl. A
detailed knowledge of these scripting languages is not required although some familiarity won't hurt. No prior experience with building C extensions to these
languages is required---after all, this is what SWIG does automatically. However, you should be reasonably familiar with the use of compilers, linkers, and
makefiles since making scripting language extensions is somewhat more complicated than writing a normal C program.

Over time SWIG releases have become significantly more capable in their C++ handling--especially support for advanced features like namespaces, overloaded
operators, and templates. Whenever possible, this manual tries to cover the technicalities of this interface. However, this isn't meant to be a tutorial on C++
programming. For many of the gory details, you will almost certainly want to consult a good C++ reference. If you don't program in C++, you may just want to
skip those parts of the manual.

1.6 Organization of this manual

The first few chapters of this manual describe SWIG in general and provide an overview of its capabilities. The remaining chapters are devoted to specific SWIG
language modules and are self contained. Thus, if you are using SWIG to build Python interfaces, you can probably skip to that chapter and find almost

1.1 Introduction

http://www.swig.org/legal.html
http://www.swig.org
http://www.swig.org/mail.html
http://www.swig.org/svn.html

SWIG-3.0 Documentation

everything you need to know.

1.7 How to avoid reading the manual

If you hate reading manuals, glance at the "Introduction" which contains a few simple examples. These examples contain about 95% of everything you need to
know to use SWIG. After that, simply use the language-specific chapters as a reference. The SWIG distribution also comes with a large directory of examples that
illustrate different topics.

1.8 Backwards compatibility

If you are a previous user of SWIG, don't expect SWIG to provide complete backwards compatibility. Although the developers strive to the utmost to keep
backwards compatibility, this isn't always possible as the primary goal over time is to make SWIG better---a process that would simply be impossible if the
developers are constantly bogged down with backwards compatibility issues. Potential incompatibilities are clearly marked in the detailed release notes.

If you need to work with different versions of SWIG and backwards compatibility is an issue, you can use the SWIG_VERSION preprocessor symbol which
holds the version of SWIG being executed. SWIG_VERSION is a hexadecimal integer such as 0x010311 (corresponding to SWIG-1.3.11). This can be used in an
interface file to define different typemaps, take advantage of different features etc:

#if SWIGi\/ERSION >= 0x010311
/* Use some fancy new feature */
#endif

Note: The version symbol is not defined in the generated SWIG wrapper file. The SWIG preprocessor has defined SWIG_VERSION since SWIG-1.3.11.

1.9 Release notes

The CHANGES.current, CHANGES and RELEASENOTES files shipped with SWIG in the top level directory contain, respectively, detailed release notes for
the current version, detailed release notes for previous releases and summary release notes from SWIG-1.3.22 onwards.

1.10 Credits

SWIG is an unfunded project that would not be possible without the contributions of many people working in their spare time. If you have benefitted from using
SWIG, please consider Donating to SWIG to keep development going. There have been a large varied number of people who have made contributions at all levels
over time. Contributors are mentioned either in the COPYRIGHT file or CHANGES files shipped with SWIG or in submitted bugs.

1.11 Bug reports

Although every attempt has been made to make SWIG bug-free, we are also trying to make feature improvements that may introduce bugs. To report a bug, either
send mail to the SWIG developer list at the swig-devel mailing list or report a bug at the SWIG bug tracker. In your report, be as specific as possible, including (if
applicable), error messages, tracebacks (if a core dump occurred), corresponding portions of the SWIG interface file used, and any important pieces of the SWIG
generated wrapper code. We can only fix bugs if we know about them.

1.12 Installation

1.12.1 Windows installation

Please see the dedicated Windows chapter for instructions on installing SWIG on Windows and running the examples. The Windows distribution is called
swigwin and includes a prebuilt SWIG executable, swig.exe, included in the top level directory. Otherwise it is exactly the same as the main SWIG distribution.
There is no need to download anything else.

1.12.2 Unix installation

You must use GNU make to build and install SWIG.

PCRE needs to be installed on your system to build SWIG, in particular pcre-config must be available. If you have PCRE headers and libraries but not pcre-config
itself or, alternatively, wish to override the compiler or linker flags returned by pcre-config, you may set PCRE LIBS and PCRE_CFLAGS variables to be used
instead. And if you don't have PCRE at all, the configure script will provide instructions for obtaining it.

To build and install SWIG, simply type the following:

$./configure
$ make
$ make install

By default SWIG installs itself in /usr/local. If you need to install SWIG in a different location or in your home directory, use the ——prefix option to
./configure. For example:

$./configure --prefix=/home/yourname/projects
$ make
$ make install

1.7 How to avoid reading the manual

20

http://www.swig.org/donate.html
http://www.swig.org/mail.html
http://www.swig.org/bugs.html
http://www.gnu.org/software/make/
http://www.pcre.org/

SWIG-3.0 Documentation

Note: the directory given to ——prefix must be an absolute pathname. Do not use the ~ shell-escape to refer to your home directory. SWIG won't work properly
if you do this.

The INSTALL file shipped in the top level directory details more about using configure. Also try

$./configure --help.

The configure script will attempt to locate various packages on your machine including Tcl, Perl5, Python and all the other target languages that SWIG supports.
Don't panic if you get 'not found' messages -- SWIG does not need these packages to compile or run. The configure script is actually looking for these packages
so that you can try out the SWIG examples contained in the 'Examples’ directory without having to hack Makefiles. Note that the --without-xxx options,
where xxx is a target language, have minimal effect. All they do is reduce the amount of testing done with 'make check'. The SWIG executable and library files
installed cannot currently be configured with a subset of target languages.

SWIG used to include a set of runtime libraries for some languages for working with multiple modules. These are no longer built during the installation stage.
However, users can build them just like any wrapper module as described in the Modules chapter. The CHANGES file shipped with SWIG in the top level
directory also lists some examples which build the runtime library.

Note:

e Ifyou checked the code out via Git, you will have to run . /autogen. sh before . /configure. In addition, a full build of SWIG requires a number of
packages to be installed. Full instructions at SWIG bleeding edge.

1.12.3 Macintosh OS X installation

SWIG is known to work on various flavors of OS X. Follow the Unix installation instructions above. However, as of this writing, there is still great deal of
inconsistency with how shared libaries are handled by various scripting languages on OS X.

Users of OS X should be aware that Darwin handles shared libraries and linking in a radically different way than most Unix systems. In order to test SWIG and
run the examples, SWIG configures itself to use flat namespaces and to allow undefined symbols (-flat namespace -undefined suppress). This
mostly closely follows the Unix model and makes it more likely that the SWIG examples will work with whatever installation of software you might have.
However, this is generally not the recommended technique for building larger extension modules. Instead, you should utilize Darwin's two-level namespaces.
Some details about this can be found here Understanding Two-Level Namespaces.

Needless to say, you might have to experiment a bit to get things working at first.
1.12.4 Testing

If you want to test SWIG after building it, a check can be performed on Unix operating systems. Type the following:

$ make -k check

This step can be performed either before or after installation. The check requires at least one of the target languages to be installed. If it fails, it may mean that you
have an uninstalled language module or that the file 'Examples/Makefile' has been incorrectly configured. It may also fail due to compiler issues such as a broken
C++ compiler. Even if the check fails, there is a pretty good chance SWIG still works correctly --- you will just have to mess around with one of the examples and
some makefiles to get it to work. Some tests may also fail due to missing dependency packages, eg PCRE or Boost, but this will require careful analysis of the
configure output done during configuration.

The test suite executed by the check is designed to stress-test many parts of the implementation including obscure corner cases. If some of these tests fail or
generate warning messages, there is no reason for alarm --- the test may be related to some new SWIG feature or a difficult bug that we're trying to resolve.
Chances are that SWIG will work just fine for you. Note that if you have more than one CPU/core, then you can use parallel make to speed up the check as it does
take quite some time to run, for example:

$ make -j2 -k check

Also, SWIG's support for C++ is sufficiently advanced that certain tests may fail on older C++ compilers (for instance if your compiler does not support member
templates). These errors are harmless if you don't intend to use these features in your own programs.

Note: The test-suite currently contains over 500 tests. If you have many different target languages installed and a slow machine, it might take more than an hour to
run the test-suite.

1.12.5 Examples

The Examples directory contains a variety of examples of using SWIG and it has some browsable documentation. Simply point your browser to the file
"Example/index.html".

The Examples directory also includes Visual C++ project 6 (.dsp) files for building some of the examples on Windows. Later versions of Visual Studio will
convert these old style project files into a current solution file.

2 Introduction

e What is SWIG?

1.7 How to avoid reading the manual

http://www.swig.org/svn.html
https://developer.apple.com/library/mac/documentation/Porting/Conceptual/PortingUnix/compiling/compiling.html#//apple_ref/doc/uid/TP40002850-BCIHJBBF

SWIG-3.0 Documentation

e Why use SWIG?
e A SWIG example
SWIG interface file
The swig command
Building a Perl5 module
Building a Python module

o Shortcuts
Supported C/C++ language features
Non-intrusive interface building
Incorporating SWIG into a build system

Hands off code generation
SWIG and freedom

o o0 o o

e o o o o

2.1 What is SWIG?

SWIG is a software development tool that simplifies the task of interfacing different languages to C and C++ programs. In a nutshell, SWIG is a compiler that
takes C/C++ declarations and creates the wrappers needed to access those declarations from other languages including Perl, Python, Tcl, Ruby, Guile, and Java.
SWIG normally requires no modifications to existing code and can often be used to build a usable interface in only a few minutes. Possible applications of SWIG
include:

e Building interpreted interfaces to existing C programs.

e Rapid prototyping and application development.

e Interactive debugging.

e Reengineering or refactoring of legacy software into scripting language components.

e Making a graphical user interface (using Tk for example).

e Testing of C libraries and programs (using scripts).

e Building high performance C modules for scripting languages.

e Making C programming more enjoyable (or tolerable depending on your point of view).

e Impressing your friends.

e Obtaining vast sums of research funding (although obviously not applicable to the author).

SWIG was originally designed to make it extremely easy for scientists and engineers to build extensible scientific software without having to get a degree in
software engineering. Because of this, the use of SWIG tends to be somewhat informal and ad-hoc (e.g., SWIG does not require users to provide formal interface
specifications as you would find in a dedicated IDL compiler). Although this style of development isn't appropriate for every project, it is particularly well suited
to software development in the small; especially the research and development work that is commonly found in scientific and engineering projects. However,
nowadays SWIG is known to be used in many large open source and commercial projects.

2.2 Why use SWIG?

As stated in the previous section, the primary purpose of SWIG is to simplify the task of integrating C/C++ with other programming languages. However, why
would anyone want to do that? To answer that question, it is useful to list a few strengths of C/C++ programming:

e Excellent support for writing programming libraries.

e High performance (number crunching, data processing, graphics, etc.).
e Systems programming and systems integration.

e Large user community and software base.

Next, let's list a few problems with C/C++ programming

e Writing a user interface is rather painful (i.e., consider programming with MFC, X11, GTK, or any number of other libraries).
e Testing is time consuming (the compile/debug cycle).

® Not easy to reconfigure or customize without recompilation.

® Modularization can be tricky.

e Security concerns (buffer overflows for instance).

To address these limitations, many programmers have arrived at the conclusion that it is much easier to use different programming languages for different tasks.
For instance, writing a graphical user interface may be significantly easier in a scripting language like Python or Tcl (consider the reasons why millions of
programmers have used languages like Visual Basic if you need more proof). An interactive interpreter might also serve as a useful debugging and testing tool.
Other languages like Java might greatly simplify the task of writing distributed computing software. The key point is that different programming languages offer
different strengths and weaknesses. Moreover, it is extremely unlikely that any programming is ever going to be perfect. Therefore, by combining languages
together, you can utilize the best features of each language and greatly simplify certain aspects of software development.

From the standpoint of C/C++, a lot of people use SWIG because they want to break out of the traditional monolithic C programming model which usually results
in programs that resemble this:

® A collection of functions and variables that do something useful.
e Amain () program that starts everything.
e A horrible collection of hacks that form some kind of user interface (but which no-one really wants to touch).

Instead of going down that route, incorporating C/C++ into a higher level language often results in a more modular design, less code, better flexibility, and
increased programmer productivity.

SWIG tries to make the problem of C/C++ integration as painless as possible. This allows you to focus on the underlying C program and using the high-level
language interface, but not the tedious and complex chore of making the two languages talk to each other. At the same time, SWIG recognizes that all applications
are different. Therefore, it provides a wide variety of customization features that let you change almost every aspect of the language bindings. This is the main
reason why SWIG has such a large user manual ;-).

2.1 What is SWIG?

SWIG-3.0 Documentation

2.3 A SWIG example

The best way to illustrate SWIG is with a simple example. Consider the following C code:

/* File : example.c */
double My variable = 3.0;

/* Compute factorial of n */
int fact(int n) {

if (n <= 1)
return 1;
else

return n*fact(n-1);

/* Compute n mod m */
int my mod(int n, int m) {

return(n % m);

}

Suppose that you wanted to access these functions and the global variable My variable from Tcl. You start by making a SWIG interface file as shown below
(by convention, these files carry a .i suffix) :

2.3.1 SWIG interface file

/* File : example.i */

$module example

S{

/* Put headers and other declarations here */
extern double My variable;

extern int fact (int) ;

extern int my mod(int n, int m);

%}

extern double My variable;
extern int fact (int) ;
extern int my mod(int n, int m);

The interface file contains ANSI C function prototypes and variable declarations. The $module directive defines the name of the module that will be created by
SWIG. The ${ %} block provides a location for inserting additional code, such as C header files or additional C declarations, into the generated C wrapper code.

2.3.2 The swig command

SWIG is invoked using the swig command. We can use this to build a Tcl module (under Linux) as follows :

unix > swig -tcl example.i

unix > gecc -c -fpic example.c example wrap.c -I/usr/local/include
unix > gecc -shared example.o example wrap.o -o example.so
unix > telsh

% load ./example.so

% fact 4

24

% my mod 23 7

2

% expr $My variable + 4.5

7.5

The swig command produced a new file called example wrap. c that should be compiled along with the example . c file. Most operating systems and
scripting languages now support dynamic loading of modules. In our example, our Tcl module has been compiled into a shared library that can be loaded into Tcl.
When loaded, Tcl can now access the functions and variables declared in the SWIG interface. A look at the file example wrap. c reveals a hideous mess.
However, you almost never need to worry about it.

2.3.3 Building a Perl5 module

Now, let's turn these functions into a Perl5 module. Without making any changes type the following (shown for Solaris):

unix > swig -perl5 example.i

unix > gecc -c example.c example wrap.c \
-I/usr/local/lib/perl5/sund4-solaris/5.003/CORE

unix > 1ld -G example.o example wrap.o -o example.so # This is for Solaris

2.3 ASWIG example

SWIG-3.0 Documentation

unix > perl5.003

use example;

print example::fact(4), "\n";

print example::my mod(23,7), "\n";
print $example::My variable + 4.5, "\n";
<ctrl-d>

24

2

7.5

unix >

2.3.4 Building a Python module

Finally, let's build a module for Python (shown for Irix).

unix > swig -python example.i

unix > gec -c -fpic example.c example wrap.c -I/usr/local/include/python2.0
unix > gecc -shared example.o example wrap.o -o _example.so

unix > python

Python 2.0 (#6, Feb 21 2001, 13:29:45)

[GCC egcs-2.91.66 19990314/Linux (egcs-1.1.2 release)] on linux2
Type "copyright", "credits" or "license" for more information.
>>> import example

>>> example.fact (4)

24

>>> example.my mod(23,7)

2

>>> example.cvar.My variable + 4.5

7.5

2.3.5 Shortcuts

To the truly lazy programmer, one may wonder why we needed the extra interface file at all. As it turns out, you can often do without it. For example, you could
also build a Perl5 module by just running SWIG on the C header file and specifying a module name as follows

unix > swig -perl5 -module example example.h

unix > gcc -c example.c example wrap.c \
-I/usr/local/lib/perl5/sund4-solaris/5.003/CORE

unix > 1d -G example.o example wrap.o -o example.so

unix > perl5.003

use example;

print example::fact(4), "\n";

print example::my mod(23,7), "\n";

print $example::My variable + 4.5, "\n";

<ctrl-d>

24

2

7.5

2.4 Supported C/C++ language features

A primary goal of the SWIG project is to make the language binding process extremely easy. Although a few simple examples have been shown, SWIG is quite
capable in supporting most of C++. Some of the major features include:

e Full C99 preprocessing.

e All ANSI C and C++ datatypes.

e Functions, variables, and constants.

e Classes.

e Single and multiple inheritance.

e Overloaded functions and methods.

e Overloaded operators.

e C++ templates (including member templates, specialization, and partial specialization).
e Namespaces.
e Variable length arguments.
e (C++ smart pointers.

Most of C++11 is also supported. Details are in the C++11 section.

It is important to stress that SWIG is not a simplistic C++ lexing tool like several apparently similar wrapper generation tools. SWIG not only parses C++, it
implements the full C++ type system and it is able to understand C++ semantics. SWIG generates its wrappers with full knowledge of this information. As a
result, you will find SWIG to be just as capable of dealing with nasty corner cases as it is in wrapping simple C++ code. In fact, SWIG is able to handle C++ code
that stresses the very limits of many C++ compilers.

2.4 Supported C/C++ language features 24

SWIG-3.0 Documentation

2.5 Non-intrusive interface building

When used as intended, SWIG requires minimal (if any) modification to existing C or C++ code. This makes SWIG extremely easy to use with existing packages
and promotes software reuse and modularity. By making the C/C++ code independent of the high level interface, you can change the interface and reuse the code
in other applications. It is also possible to support different types of interfaces depending on the application.

2.6 Incorporating SWIG into a build system

SWIG is a command line tool and as such can be incorporated into any build system that supports invoking external tools/compilers. SWIG is most commonly
invoked from within a Makefile, but is also known to be invoked from popular IDEs such as Microsoft Visual Studio.

If you are using the GNU Autotools (Autoconf/ Automake / Libtool) to configure SWIG use in your project, the SWIG Autoconf macros can be used. The

primary macro is ax_pkg swig, see http://www.gnu.org/software/autoconf-archive/ax_pkg swig.html#ax_pkg swig . The ax python devel macro is also
helpful for generating Python extensions. See the Autoconf Archive for further information on this and other Autoconf macros.

There is growing support for SWIG in some build tools, for example CMake is a cross-platform, open-source build manager with built in support for SWIG.
CMake can detect the SWIG executable and many of the target language libraries for linking against. CMake knows how to build shared libraries and loadable
modules on many different operating systems. This allows easy cross platform SWIG development. It can also generate the custom commands necessary for
driving SWIG from IDEs and makefiles. All of this can be done from a single cross platform input file. The following example is a CMake input file for creating a
python wrapper for the SWIG interface file, example.i:

This is a CMake example for Python

FIND PACKAGE (SWIG REQUIRED)
INCLUDE (${SWIG USE FILE})

FIND PACKAGE (PythonLibs)
INCLUDE DIRECTORIES (${PYTHON INCLUDE PATH})

INCLUDE DIRECTORIES (${CMAKE_CURRENT_ SOURCE_DIR})

SET (CMAKE_SWIG_FLAGS "")

SET SOURCE FILES PROPERTIES (example.i PROPERTIES CPLUSPLUS ON)

SET SOURCE FILES PROPERTIES (example.i PROPERTIES SWIG FLAGS "-includeall")

SWIG _ADD MODULE (example python example.i example.cxx)
SWIG LINK LIBRARIES (example $q{ PYTHON LIBRARIES})

The above example will generate native build files such as makefiles, nmake files and Visual Studio projects which will invoke SWIG and compile the generated
C++ files into _example.so (UNIX) or _example.pyd (Windows). For other target languages on Windows a dll, instead of a .pyd file, is usually generated.

2.7 Hands off code generation

SWIG is designed to produce working code that needs no hand-modification (in fact, if you look at the output, you probably won't want to modify it). You should
think of your target language interface being defined entirely by the input to SWIG, not the resulting output file. While this approach may limit flexibility for
hard-core hackers, it allows others to forget about the low-level implementation details.

2.8 SWIG and freedom

No, this isn't a special section on the sorry state of world politics. However, it may be useful to know that SWIG was written with a certain "philosophy" about
programming---namely that programmers are smart and that tools should just stay out of their way. Because of that, you will find that SWIG is extremely
permissive in what it lets you get away with. In fact, you can use SWIG to go well beyond "shooting yourself in the foot" if dangerous programming is your goal.
On the other hand, this kind of freedom may be exactly what is needed to work with complicated and unusual C/C++ applications.

Tronically, the freedom that SWIG provides is countered by an extremely conservative approach to code generation. At its core, SWIG tries to distill even the
most advanced C++ code down to a small well-defined set of interface building techniques based on ANSI C programming. Because of this, you will find that
SWIG interfaces can be easily compiled by virtually every C/C++ compiler and that they can be used on any platform. Again, this is an important part of staying
out of the programmer's way----the last thing any developer wants to do is to spend their time debugging the output of a tool that relies on non-portable or
unreliable programming features. Dependencies are often a source of incompatibilities and problems and so additional third party libraries are not used in the
generated code. SWIG will also generally avoid generating code that introduces a dependency on the C++ Standard Template Library (STL). SWIG will generate
code that depends on the C libraries though.

3 Getting started on Windows

e Installation on Windows
o Windows Executable
e SWIG Windows Examples

o Instructions for using the Examples with Visual Studio
u C#

2.5 Non-intrusive interface building

25

http://www.gnu.org/software/autoconf/
http://www.gnu.org/software/automake/
http://www.gnu.org/software/libtool/
http://www.gnu.org/software/autoconf-archive/ax_pkg_swig.html#ax_pkg_swig
http://www.gnu.org/software/autoconf-archive/
http://cmake.org

SWIG-3.0 Documentation

—
=)
<
o5

" & m RN
5 |
9
EN=}
=

tho!
TCL

T~

= Ruby
o Instructions for using the Examples with other compilers
® SWIG on Cygwin and MinGW.
o Building swig.exe on Windows
= Building swig.exe using MinGW and MSYS
= Building swig.exe using Cygwin
= Building swig.exe alternatives
o Running the examples on Windows using Cygwin
® Microsoft extensions and other Windows quirks

This chapter describes SWIG usage on Microsoft Windows. Installing SWIG and running the examples is covered as well as building the SWIG executable.
Usage within the Unix like environments MinGW and Cygwin is also detailed.

3.1 Installation on Windows

SWIG does not come with the usual Windows type installation program, however it is quite easy to get started. The main steps are:

e Download the swigwin zip package from the SWIG website and unzip into a directory. This is all that needs downloading for the Windows platform.
e Set environment variables as described in the SWIG Windows Examples section in order to run examples using Visual C++.

3.1.1 Windows Executable

The swigwin distribution contains the SWIG Windows executable, swig.exe, which will run on 32 bit versions of Windows, ie Windows 95 and later. If you want
to build your own swig.exe have a look at Building swig.exe on Windows.

3.2 SWIG Windows Examples

Using Microsoft Visual C++ is the most common approach to compiling and linking SWIG's output. The Examples directory has a few Visual C++ project files
(.dsp files). These were produced by Visual C++ 6. Newer versions of Visual Studio should be able to open and convert these project files. Each C# example
comes with a Visual Studio 2005 solution and associated project files instead of Visual C++ 6 project files. The project files have been set up to execute SWIG in
a custom build rule for the SWIG interface (.i) file. Alternatively run the examples using Cygwin.

More information on each of the examples is available with the examples distributed with SWIG (Examples/index.html).

3.2.1 Instructions for using the Examples with Visual Studio
Ensure the SWIG executable is as supplied in the SWIG root directory in order for the examples to work. Most languages require some environment variables to
be set before running Visual C++. Note that Visual C++ must be re-started to pick up any changes in environment variables. Open up an example .dsp file,
Visual C++ will create a workspace for you (.dsw file). Ensure the Release build is selected then do a Rebuild All from the Build menu. The required
environment variables are displayed with their current values.
The list of required environment variables for each module language is also listed below. They are usually set from the Control Panel and System properties, but
this depends on which flavour of Windows you are running. If you don't want to use environment variables then change all occurrences of the environment

variables in the .dsp files with hard coded values. If you are interested in how the project files are set up there is explanatory information in some of the language
module's documentation.

3.2.1.1C#

The C# examples do not require any environment variables to be set as a C# project file is included. Just open up the .sln solution file in Visual Studio .NET 2003
or later, select Release Build, and do a Rebuild All from the Build menu. The accompanying C# and C++ project files are automatically used by the solution file.

3.2.1.2 Java

JAVA_INCLUDE : Set this to the directory containing jni.h
JAVA_BIN : Set this to the bin directory containing javac.exe

Example using JDK1.3:

JAVA INCLUDE: D:\jdkl.3\include
JAVA BIN: D:\jdkl.3\bin

3.2.1.3 Perl

PERL5_INCLUDE : Set this to the directory containing perl.h
PERL5_LIB: Set this to the Perl library including path for linking

Example using nsPerl 5.004_04:

PERL5_ INCLUDE: D:\nsPerl5.004 04\1ib\CORE
PERL5 LIB: D:\nsPerl5.004 04\1ib\CORE\perl.lib

3.2.1.4 Python

3.1 Installation on Windows

http://www.swig.org

SWIG-3.0 Documentation

PYTHON_INCLUDE : Set this to the directory that contains Python.h
PYTHON_LIB : Set this to the python library including path for linking

Example using Python 2.1.1:
PYTHON INCLUDE: D:\python2l\include
PYTHON LIB: D:\python21l\libs\python2l.1lib

3.2.1.5 TCL

TCL_INCLUDE : Set this to the directory containing tcl.h
TCL_LIB: Set this to the TCL library including path for linking

Example using ActiveTcl 8.3.3.3
TCL_INCLUDE: D: \tcl\include
TCL LIB: D:\tcl\lib\tcl83.1lib

3.2.1.6 R

R_INCLUDE : Set this to the directory containing R.h
R_LIB: Set this to the R library (RdILlib) including path for linking. The library needs to be built as described in the R README.packages file (the pexports.exe
approach is the easiest).

Example using R 2.5.1:

R_INCLUDE: C:\Program Files\R\R-2.5.1\include
R LIB: C:\Program Files\R\R-2.5.1\bin\Rdll.1lib

3.2.1.7 Ruby

RUBY_INCLUDE : Set this to the directory containing ruby.h
RUBY_LIB : Set this to the ruby library including path for linking

Example using Ruby 1.6.4:
RUBY INCLUDE: D:\ruby\lib\ruby\1l.6\i586-mswin32
RUBY LIB: D:\ruby\lib\mswin32-rubyl6.lib
3.2.2 Instructions for using the Examples with other compilers
If you do not have access to Visual C++ you will have to set up project files / Makefiles for your chosen compiler. There is a section in each of the language

modules detailing what needs setting up using Visual C++ which may be of some guidance. Alternatively you may want to use Cygwin as described in the
following section.

3.3 SWIG on Cygwin and MinGW

SWIG can also be compiled and run using Cygwin or MinGW which provides a Unix like front end to Windows and comes free with gcc, an ANSI C/C++
compiler. However, this is not a recommended approach as the prebuilt executable is supplied.

3.3.1 Building swig.exe on Windows
If you want to replicate the build of swig.exe that comes with the download, follow the MinGW instructions below. This is not necessary to use the supplied
swig.exe. This information is provided for those that want to modify the SWIG source code in a Windows environment. Normally this is not needed, so most
people will want to ignore this section.

3.3.1.1 Building swig.exe using MinGW and MSYS

The short abbreviated instructions follow...

e Install MinGW and MSYS from the MinGW site. This provides a Unix environment on Windows.
e Follow the usual Unix instructions in the README file in the SWIG root directory to build swig.exe from the MinGW command prompt.

The step by step instructions to download and install MinGW and MSYS, then download and build the latest version of SWIG from Github follow... Note that the
instructions for obtaining SWIG from Github are also online at SWIG Bleeding Edge.

Pitfall note: Execute the steps in the order shown and don't use spaces in path names. In fact it is best to use the default installation directories.

1. Download the following packages from the MinGW download page or MinGW SourceForge download page. Note that at the time of writing, the majority
of these are in the Current release list and some are in the Snapshot or Previous release list.
o MinGW-3.1.0-1.exe
o MSYS-1.0.11-2004.04.30-1.exe
o msysDTK-1.0.1.exe
o bison-2.0-MSYS.tar.gz
o msys-autoconf-2.59.tar.bz2
o msys-automake-1.8.2.tar.bz2
2. Install MinGW-3.1.0-1.exe (C:\MinGW is default location.)
3. Install MSYS-1.0.11-2004.04.30-1.exe. Make sure you install it on the same windows drive letter as MinGW (C:\msys\1.0 is default). In the post install
script,
o Answer y to the "do you wish to continue with the post install?"
o Answer y to the "do you have MinGW installed?"
o Type in the folder in which you installed MinGW (C:/MinGW is default)

3.3 SWIG on Cygwin and MinGW 27

http://www.cygwin.com
http://www.mingw.org
http://www.mingw.org
http://www.swig.org/svn.html
http://www.mingw.org/download.shtml
http://sourceforge.net/projects/mingw/files/

SWIG-3.0 Documentation

4. Install msysDTK-1.0.1.exe to the same folder that you installed MSYS (C:\msys\1.0 is default).
5. Copy the following to the MSY'S install folder (C:\msys\1.0 is default):

o msys-automake-1.8.2.tar.bz2

o msys-autoconf-2.59.tar.bz2

o bison-2.0-MSYS.tar.gz
6. Start the MSYS command prompt and execute:

cd /

tar -jxf msys-automake-1.8.2.tar.bz2
tar -jxf msys-autoconf-2.59.tar.bz2
tar -zxf bison-2.0-MSYS.tar.gz

7. The very latest development version of SWIG is available from SWIG on Github and can be downloaded as a zip file or if you have Git installed, via Git.
Either download the latest Zip file snapshot and unzip and rename the top level folder to /usr/src/swig. Otherwise if using Git, type in the following:

mkdir /usr/src
cd /usr/src
git clone https://github.com/swig/swig.git

Pitfall note: If you want to place SWIG in a different folder to the proposed /ust/src/swig, do not use MSY'S emulated windows drive letters, because the
autotools will fail miserably on those.

8. The PCRE third party library needs to be built next. Download the latest PCRE source tarball, such as pcre-8.10.tar.bz2, from PCRE and place in
the /usr/src/swig directory. Build PCRE as a static library using the Tools/pcre-build.sh script as follows:

cd /usr/src/swig
Tools/pcre-build.sh

9. You are now ready to build SWIG. Execute the following commands to build swig.exe:

cd /usr/src/swig
./autogen.sh
./configure

make

3.3.1.2 Building swig.exe using Cygwin

Note that SWIG can also be built using Cygwin. However, SWIG will then require the Cygwin DLL when executing. Follow the Unix instructions in the
READMEE file in the SWIG root directory. Note that the Cygwin environment will also allow one to regenerate the autotool generated files which are supplied
with the release distribution. These files are generated using the autogen . sh script and will only need regenerating in circumstances such as changing the build
system.

3.3.1.3 Building swig.exe alternatives

If you don't want to install Cygwin or MinGW, use a different compiler to build SWIG. For example, all the source code files can be added to a Visual C++
project file in order to build swig.exe from the Visual C++ IDE.

3.3.2 Running the examples on Windows using Cygwin

The examples and test-suite work as successfully on Cygwin as on any other Unix operating system. The modules which are known to work are Python, Tcl, Perl,
Ruby, Java and C#. Follow the Unix instructions in the README file in the SWIG root directory to build the examples.

3.4 Microsoft extensions and other Windows quirks

A common problem when using SWIG on Windows are the Microsoft function calling conventions which are not in the C++ standard. SWIG parses ISO C/C++
so cannot deal with proprietary conventions suchas declspec (dllimport), stdcall etc. There is a Windows interface file, windows. 1, to deal
with these calling conventions though. The file also contains typemaps for handling commonly used Windows specific types suchas int64, BOOL , DWORD
etc. Include it like you would any other interface file, for example:

%$include <windows.i>

__declspec(dllexport) ULONG _ stdcall foo(DWORD, int32);

Note that if you follow Microsoft's recommendation of wrapping the declspec calls in a preprocessor definition, you will need to make sure that the
definition is included by SWIG as well, by either defining it manually or via a header. For example, if you have specified the preprocessor definition in a header
named export 1ib.h and include other headers which depend on it, you should use the $include directive to include the definition explicitly. For example,
if you had a header file, bar . h, which depended on export 1ib.h, your SWIG definition file might look like:

// bar.i

$module bar

%$include <windows.i>
%include "export lib.h"
%$include "bar.h"

3.4 Microsoft extensions and other Windows quirks

28

https://github.com/swig/swig
https://github.com/swig/swig/archive/master.zip
http://www.pcre.org

SWIG-3.0 Documentation

where export_lib.h may contain:

// export lib.h
#define BAR API _ declspec(dllexport)

and bar.h may look like:

// bar.h
#include "export lib.h"
BAR_API void bar_function(int, double);

Using the preprocessor to remove BAR_API is a popular simpler solution:

// bar.i

$module bar
#define BAR API
%$include "bar.h"

4 Scripting Languages

e The two language view of the world

e How does a scripting language talk to C?
o Wrapper functions

Constants

Structures and classes

Proxy classes

e Building scripting language extensions
o Shared libraries and dynamic loading
o Linking with shared libraries

o
o
o
o

This chapter provides a brief overview of scripting language extension programming and the mechanisms by which scripting language interpreters access C and
C++ code.

4.1 The two language view of the world

When a scripting language is used to control a C program, the resulting system tends to look as follows:

| Scripting Language
» 2

Collection of C/C++ functions

In this programming model, the scripting language interpreter is used for high level control whereas the underlying functionality of the C/C++ program is
accessed through special scripting language "commands." If you have ever tried to write your own simple command interpreter, you might view the scripting
language approach to be a highly advanced implementation of that. Likewise, If you have ever used a package such as MATLAB or IDL, it is a very similar
model--the interpreter executes user commands and scripts. However, most of the underlying functionality is written in a low-level language like C or Fortran.

The two-language model of computing is extremely powerful because it exploits the strengths of each language. C/C++ can be used for maximal performance and
complicated systems programming tasks. Scripting languages can be used for rapid prototyping, interactive debugging, scripting, and access to high-level data
structures such associative arrays.

4.2 How does a scripting language talk to C?

Scripting languages are built around a parser that knows how to execute commands and scripts. Within this parser, there is a mechanism for executing commands
and accessing variables. Normally, this is used to implement the builtin features of the language. However, by extending the interpreter, it is usually possible to
add new commands and variables. To do this, most languages define a special API for adding new commands. Furthermore, a special foreign function interface
defines how these new commands are supposed to hook into the interpreter.

Typically, when you add a new command to a scripting interpreter you need to do two things; first you need to write a special "wrapper" function that serves as
the glue between the interpreter and the underlying C function. Then you need to give the interpreter information about the wrapper by providing details about
the name of the function, arguments, and so forth. The next few sections illustrate the process.

4.2.1 Wrapper functions

4.1 The two language view of the world

SWIG-3.0 Documentation

Suppose you have an ordinary C function like this :

int fact(int n) {

if (n <= 1)
return 1;
else

return n*fact(n-1);

In order to access this function from a scripting language, it is necessary to write a special "wrapper" function that serves as the glue between the scripting
language and the underlying C function. A wrapper function must do three things :

e Gather function arguments and make sure they are valid.
e (all the C function.
e Convert the return value into a form recognized by the scripting language.

As an example, the Tcl wrapper function for the fact () function above example might look like the following :

int wrap fact(ClientData clientData, Tcl Interp *interp, int argc, char *argv[]) {

int result;

int arg0;

if (argc != 2) {
interp->result = "wrong # args";
return TCL_ERROR;

}

arg0 = atoi(argv(1l]);

result = fact(arg0);

sprintf (interp->result, "$d", result);

return TCL OK;

Once you have created a wrapper function, the final step is to tell the scripting language about the new function. This is usually done in an initialization function
called by the language when the module is loaded. For example, adding the above function to the Tcl interpreter requires code like the following :

int Wrap Init(Tcl Interp *interp) {
Tcl CreateCommand (interp, "fact", wrap fact, (ClientData) NULL,
(Tcl CmdDeleteProc *) NULL);
return TCL_ OK;
}

When executed, Tcl will now have a new command called "fact " that you can use like any other Tcl command.

Although the process of adding a new function to Tcl has been illustrated, the procedure is almost identical for Perl and Python. Both require special wrappers to
be written and both need additional initialization code. Only the specific details are different.

4.2.2 Variable linking

Variable linking refers to the problem of mapping a C/C++ global variable to a variable in the scripting language interpreter. For example, suppose you had the
following variable:

double Foo = 3.5;

It might be nice to access it from a script as follows (shown for Perl):

$a = $Foo * 2.3; # Evaluation
SFoo = $a + 2.0

9 # Assignment

To provide such access, variables are commonly manipulated using a pair of get/set functions. For example, whenever the value of a variable is read, a "get"
function is invoked. Similarly, whenever the value of a variable is changed, a "set" function is called.

In many languages, calls to the get/set functions can be attached to evaluation and assignment operators. Therefore, evaluating a variable such as $Foo might
implicitly call the get function. Similarly, typing $Foo = 4 would call the underlying set function to change the value.

4.2.3 Constants

In many cases, a C program or library may define a large collection of constants. For example:

#define RED 0x£f£0000
#define BLUE 0x0000ff

4.1 The two language view of the world 30

SWIG-3.0 Documentation

#define GREEN 0x00ff00

To make constants available, their values can be stored in scripting language variables such as SRED, $BLUE, and $GREEN. Virtually all scripting languages
provide C functions for creating variables so installing constants is usually a trivial exercise.

4.2.4 Structures and classes

Although scripting languages have no trouble accessing simple functions and variables, accessing C/C++ structures and classes present a different problem. This
is because the implementation of structures is largely related to the problem of data representation and layout. Furthermore, certain language features are difficult
to map to an interpreter. For instance, what does C++ inheritance mean in a Perl interface?

The most straightforward technique for handling structures is to implement a collection of accessor functions that hide the underlying representation of a
structure. For example,

struct Vector {
Vector ()
~Vector () ;
double x,y,z;
}i

can be transformed into the following set of functions :

Vector *new Vector();

void delete Vector (Vector *v);

double Vector x get (Vector *v);

double Vector y get (Vector *v);

double Vector z get (Vector *v);

void Vector x set(Vector *v, double x);
void Vector y set(Vector *v, double y);
void Vector z set(Vector *v, double z);

Now, from an interpreter these function might be used as follows:

set v [new Vector]
Vector x set $v 3.5
Vector y get $v
delete Vector $v

o o o° o° o°

Since accessor functions provide a mechanism for accessing the internals of an object, the interpreter does not need to know anything about the actual
representation of a Vector.

4.2.5 Proxy classes
In certain cases, it is possible to use the low-level accessor functions to create a proxy class, also known as a shadow class. A proxy class is a special kind of

object that gets created in a scripting language to access a C/C++ class (or struct) in a way that looks like the original structure (that is, it proxies the real C++
class). For example, if you have the following C++ definition :

class Vector {
public:
Vector ()
~Vector () ;
double x,y,z;
}i

A proxy classing mechanism would allow you to access the structure in a more natural manner from the interpreter. For example, in Python, you might want to do
this:

>>> v = Vector()
>>> v.x 3

>>> v.y = 4

>>> v.z = -13
>>>

>>> del v

Similarly, in Perl5 you may want the interface to work like this:

4.1 The two language view of the world

SWIG-3.0 Documentation

$v = new Vector;

Sv->{x} = 3;
Sv—>{y} = 4;
Sv->{z} = -13;

Finally, in Tcl :

Vector v
v configure -x 3 -y 4 -z -13

When proxy classes are used, two objects are really at work--one in the scripting language, and an underlying C/C++ object. Operations affect both objects
equally and for all practical purposes, it appears as if you are simply manipulating a C/C++ object.

4.3 Building scripting language extensions

The final step in using a scripting language with your C/C++ application is adding your extensions to the scripting language itself. There are two primary
approaches for doing this. The preferred technique is to build a dynamically loadable extension in the form of a shared library. Alternatively, you can recompile
the scripting language interpreter with your extensions added to it.

4.3.1 Shared libraries and dynamic loading

To create a shared library or DLL, you often need to look at the manual pages for your compiler and linker. However, the procedure for a few common platforms
is shown below:

Build a shared library for Solaris
gcc -fpic -c example.c example wrap.c -I/usr/local/include
1d -G example.o example wrap.o -o example.so

Build a shared library for Linux
gcc -fpic -c example.c example wrap.c -I/usr/local/include
gcc -shared example.o example wrap.o -o example.so

To use your shared library, you simply use the corresponding command in the scripting language (load, import, use, etc...). This will import your module and
allow you to start using it. For example:

o°

load ./example.so
fact 4
4

o°

N

o°

When working with C++ codes, the process of building shared libraries may be more complicated--primarily due to the fact that C++ modules may need
additional code in order to operate correctly. On many machines, you can build a shared C++ module by following the above procedures, but changing the link
line to the following :

c++ -shared example.o example wrap.o -o example.so

4.3.2 Linking with shared libraries

When building extensions as shared libraries, it is not uncommon for your extension to rely upon other shared libraries on your machine. In order for the
extension to work, it needs to be able to find all of these libraries at run-time. Otherwise, you may get an error such as the following :

>>> import graph
Traceback (innermost last):

File "<stdin>", line 1, in ?

File "/home/sci/datal/beazley/graph/graph.py", line 2, in ?

import graphc

ImportError: 1101:/home/sci/datal/beazley/bin/python: rld: Fatal Error: cannot
successfully map soname 'libgraph.so' under any of the filenames /usr/lib/libgraph.so:/
lib/libgraph.so:/lib/cmplrs/cc/libgraph.so:/usr/lib/cmplrs/cc/libgraph.so:
>>>

What this error means is that the extension module created by SWIG depends upon a shared library called "1ibgraph. so" that the system was unable to
locate. To fix this problem, there are a few approaches you can take.

e Link your extension and explicitly tell the linker where the required libraries are located. Often times, this can be done with a special linker flag such as -R,
-rpath, etc. This is not implemented in a standard manner so read the man pages for your linker to find out more about how to set the search path for

4.3 Building scripting language extensions

32

SWIG-3.0 Documentation

shared libraries.

e Put shared libraries in the same directory as the executable. This technique is sometimes required for correct operation on non-Unix platforms.

e Set the UNIX environment variable LD LIBRARY PATH to the directory where shared libraries are located before running Python. Although this is an
easy solution, it is not recommended. Consider setting the path using linker options instead.

4.3.3 Static linking

With static linking, you rebuild the scripting language interpreter with extensions. The process usually involves compiling a short main program that adds your
customized commands to the language and starts the interpreter. You then link your program with a library to produce a new scripting language executable.

Although static linking is supported on all platforms, this is not the preferred technique for building scripting language extensions. In fact, there are very few
practical reasons for doing this--consider using shared libraries instead.

5 SWIG Basics

e Running SWIG
Input format
SWIG Output
Comments
C Preprocessor
SWIG Directives
Parser Limitations
e Wrapping Simple C Declarations
Basic Type Handling
Global Variables
Constants
A brief word about const
o A cautionary tale of char *
Pointers and complex objects
o Simple pointers
o Run time pointer type checking
o Derived types, structs, and classes
o Undefined datatypes
o Typedef
Other Practicalities
o Passing structures by value
Return by value
Linking to structure variables
Linking to char *
Arrays
Creating read-only variables
Renaming and ignoring declarations
= Simple renaming of specific identifiers
= Advanced renaming support
= Limiting global renaming rules
= Jgnoring everything then wrapping a few selected symbols
o Default/optional arguments
o Pointers to functions and callbacks
¢ Structures and unions
Typedef and structures
Character strings and structures
Array members
Structure data members
C constructors and destructors
Adding member functions to C structures
Nested structures
o Other things to note about structure wrapping
¢ Code Insertion
o The output of SWIG
o Code insertion blocks
o Inlined code blocks
o Initialization blocks
e An Interface Building Strategy
o Preparing a C program for SWIG
The SWIG interface file
Why use separate interface files?
Getting the right header files
What to do with main()

0 0O 0 0 o o

o o0 o o

0O 0O 0 0 0o o o 0 0O 0 0 o o

o o0 o o

This chapter describes the basic operation of SWIG, the structure of its input files, and how it handles standard ANSI C declarations. C++ support is described in
the next chapter. However, C++ programmers should still read this chapter to understand the basics. Specific details about each target language are described in
later chapters.

5.1 Running SWIG

5.1 Running SWIG

33

SWIG-3.0 Documentation

To run SWIG, use the swig command with options and a filename like this:

swig [options] filename

where filename is a SWIG interface file or a C/C++ header file. Below is a subset of options that can be used. Additional options are also defined for each
target language. A full list can be obtained by typing swig -helporswig -<lang> -help for language </lang> specific options.

-allegrocl Generate ALLEGROCL wrappers

-chicken Generate CHICKEN wrappers

-clisp Generate CLISP wrappers

-cffi Generate CFFI wrappers

-csharp Generate C# wrappers

-d Generate D wrappers

-go Generate Go wrappers

-guile Generate Guile wrappers

-java Generate Java wrappers

-javascript Generate Javascript wrappers

-lua Generate Lua wrappers

-modula3 Generate Modula 3 wrappers

-mzscheme Generate Mzscheme wrappers

-ocaml Generate Ocaml wrappers

-octave Generate Octave wrappers

-perl Generate Perl wrappers

-php Generate PHP wrappers

-pike Generate Pike wrappers

-python Generate Python wrappers

=i Generate R (aka GNU S) wrappers

-ruby Generate Ruby wrappers

-scilab Generate Scilab wrappers

—-sexp Generate Lisp S-Expressions wrappers

=tel Generate Tcl wrappers

-uffi Generate Common Lisp / UFFI wrappers

-xml Generate XML wrappers

=E4rr Enable C++ parsing

-cppext ext Change file extension of C++ generated files to ext
(default is cxx, except for PHP which uses cpp)

-Dsymbol Define a preprocessor symbol

-Fstandard Display error/warning messages in commonly used format

-Fmicrosoft Display error/warning messages in Microsoft format

-help Display all options

-Idir Add a directory to the file include path

-1file Include a SWIG library file.

-module name Set the name of the SWIG module

-0 outfile Set name of C/C++ output file to <outfile>

-oh headfile Set name of C++ output header file for directors to <headfile>

-outcurrentdir Set default output dir to current dir instead of input file's path

-outdir dir Set language specific files output directory

-pcreversion Display PCRE version information

-swiglib Show location of SWIG library

-version Show SWIG version number

5.1.1 Input format

As input, SWIG expects a file containing ANSI C/C++ declarations and special SWIG directives. More often than not, this is a special SWIG interface file which
is usually denoted with a special . i or . swg suffix. In certain cases, SWIG can be used directly on raw header files or source files. However, this is not the most
typical case and there are several reasons why you might not want to do this (described later).

The most common format of a SWIG interface is as follows:

$module mymodule

S 1

#include "myheader.h"

S}

// Now list ANSI C/C++ declarations
int foo;

int bar (int x);

The module name is supplied using the special $module directive. Modules are described further in the Modules Introduction section.

Everything in the ${ ... %} block is simply copied verbatim to the resulting wrapper file created by SWIG. This section is almost always used to include
header files and other declarations that are required to make the generated wrapper code compile. It is important to emphasize that just because you include a

5.1 Running SWIG

34

SWIG-3.0 Documentation

declaration in a SWIG input file, that declaration does not automatically appear in the generated wrapper code---therefore you need to make sure you include the
proper header files inthe ${ ... %} section. It should be noted that the text enclosed in ${ ... %} isnot parsed or interpreted by SWIG. The %{...%}
syntax and semantics in SWIG is analogous to that of the declarations section used in input files to parser generation tools such as yacc or bison.

5.1.2 SWIG Output

The output of SWIG is a C/C++ file that contains all of the wrapper code needed to build an extension module. SWIG may generate some additional files
depending on the target language. By default, an input file with the name file. i is transformed into a file file wrap.c or file wrap.cxx (depending
on whether or not the —c++ option has been used). The name of the output C/C++ file can be changed using the —o option. In certain cases, file suffixes are used
by the compiler to determine the source language (C, C++, etc.). Therefore, you have to use the —o option to change the suffix of the SWIG-generated wrapper
file if you want something different than the default. For example:

$ swig -ct++ -python -o example wrap.cpp example.i

The C/C++ output file created by SWIG often contains everything that is needed to construct an extension module for the target scripting language. SWIG is not a
stub compiler nor is it usually necessary to edit the output file (and if you look at the output, you probably won't want to). To build the final extension module, the
SWIG output file is compiled and linked with the rest of your C/C++ program to create a shared library.

For many target languages SWIG will also generate proxy class files in the target language. The default output directory for these language specific files is the
same directory as the generated C/C++ file. This can be modified using the —outdir option. For example:

$ swig -ct++ -python -outdir pyfiles -o cppfiles/example wrap.cpp example.i

If the directories cppfiles and pyfiles exist, the following will be generated:

cppfiles/example wrap.cpp
pyfiles/example.py

If the —outcurrentdir option is used (without —o) then SWIG behaves like a typical C/C++ compiler and the default output directory is then the current
directory. Without this option the default output directory is the path to the input file. If —o and —outcurrentdir are used together, —-outcurrentdir is
effectively ignored as the output directory for the language files is the same directory as the generated C/C++ file if not overridden with —outdir.

5.1.3 Comments

C and C++ style comments may appear anywhere in interface files. In previous versions of SWIG, comments were used to generate documentation files.
However, this feature is currently under repair and will reappear in a later SWIG release.

5.1.4 C Preprocessor

Like C, SWIG preprocesses all input files through an enhanced version of the C preprocessor. All standard preprocessor features are supported including file
inclusion, conditional compilation and macros. However, #include statements are ignored unless the ~includeall command line option has been supplied.
The reason for disabling includes is that SWIG is sometimes used to process raw C header files. In this case, you usually only want the extension module to
include functions in the supplied header file rather than everything that might be included by that header file (i.e., system headers, C library functions, etc.).

It should also be noted that the SWIG preprocessor skips all text enclosed inside a $ { . . . %} block. In addition, the preprocessor includes a number of macro
handling enhancements that make it more powerful than the normal C preprocessor. These extensions are described in the "Preprocessor” chapter.

5.1.5 SWIG Directives

Most of SWIG's operation is controlled by special directives that are always preceded by a "%" to distinguish them from normal C declarations. These directives
are used to give SWIG hints or to alter SWIG's parsing behavior in some manner.

Since SWIG directives are not legal C syntax, it is generally not possible to include them in header files. However, SWIG directives can be included in C header
files using conditional compilation like this:

/* header.h --- Some header file */

/* SWIG directives -- only seen if SWIG is running */
#ifdef SWIG

$module foo

#endif

SWIG is a special preprocessing symbol defined by SWIG when it is parsing an input file.
5.1.6 Parser Limitations

Although SWIG can parse most C/C++ declarations, it does not provide a complete C/C++ parser implementation. Most of these limitations pertain to very
complicated type declarations and certain advanced C++ features. Specifically, the following features are not currently supported:

® Non-conventional type declarations. For example, SWIG does not support declarations such as the following (even though this is legal C):

5.1 Running SWIG 35

SWIG-3.0 Documentation

/* Non-conventional placement of storage specifier (extern) */
const int extern Number;

/* Extra declarator grouping */
Matrix (foo); // A global variable

/* Extra declarator grouping in parameters */
void bar (Spam (Grok) (Doh));

In practice, few (if any) C programmers actually write code like this since this style is never featured in programming books. However, if you're feeling
particularly obfuscated, you can certainly break SWIG (although why would you want to?).

e Running SWIG on C++ source files (the code in a .C, .cpp or .cxx file) is not recommended. The usual approach is to feed SWIG header files for parsing
C++ definitions and declarations. The main reason is if SWIG parses a scoped definition or declaration (as is normal for C++ source files), it is ignored,
unless a declaration for the symbol was parsed earlier. For example

/* bar not wrapped unless foo has been defined and
the declaration of bar within foo has already been parsed */
int foo::bar(int) {
whatever

e (Certain advanced features of C++ such as nested classes are not yet fully supported. Please see the C++ Nested classes section for more information.

In the event of a parsing error, conditional compilation can be used to skip offending code. For example:

#ifndef SWIG
some bad declarations
#endif

Alternatively, you can just delete the offending code from the interface file.

One of the reasons why SWIG does not provide a full C++ parser implementation is that it has been designed to work with incomplete specifications and to be
very permissive in its handling of C/C++ datatypes (e.g., SWIG can generate interfaces even when there are missing class declarations or opaque datatypes).
Unfortunately, this approach makes it extremely difficult to implement certain parts of a C/C++ parser as most compilers use type information to assist in the
parsing of more complex declarations (for the truly curious, the primary complication in the implementation is that the SWIG parser does not utilize a separate
typedef-name terminal symbol as described on p. 234 of K&R).

5.2 Wrapping Simple C Declarations

SWIG wraps simple C declarations by creating an interface that closely matches the way in which the declarations would be used in a C program. For example,
consider the following interface file:

$module example

$inline %{

extern double sin (double x);

extern int strcmp (const char *, const char *);
extern int Foo;

S}

#define STATUS 50

#define VERSION "1.1"

In this file, there are two functions sin () and strcmp (), a global variable Foo, and two constants STATUS and VERSION. When SWIG creates an extension
module, these declarations are accessible as scripting language functions, variables, and constants respectively. For example, in Tcl:

% sin 3

5.2335956

% strcmp Dave Mike
1

puts $Foo

2

puts $STATUS

0

puts S$VERSION
odl

o Ul o° > o° |

—

Or in Python:

5.2 Wrapping Simple C Declarations

SWIG-3.0 Documentation

>>> example.sin(3)

5.2335956

>>> example.strcmp ('Dave', 'Mike')
=1

>>> print example.cvar.Foo

42

>>> print example.STATUS

50

>>> print example.VERSION

1.1

Whenever possible, SWIG creates an interface that closely matches the underlying C/C++ code. However, due to subtle differences between languages, run-time
environments, and semantics, it is not always possible to do so. The next few sections describe various aspects of this mapping.

5.2.1 Basic Type Handling

In order to build an interface, SWIG has to convert C/C++ datatypes to equivalent types in the target language. Generally, scripting languages provide a more
limited set of primitive types than C. Therefore, this conversion process involves a certain amount of type coercion.

Most scripting languages provide a single integer type that is implemented using the int or 1ong datatype in C. The following list shows all of the C datatypes
that SWIG will convert to and from integers in the target language:

int

short

long

unsigned
signed
unsigned short
unsigned long
unsigned char
signed char
bool

When an integral value is converted from C, a cast is used to convert it to the representation in the target language. Thus, a 16 bit short in C may be promoted to a
32 bit integer. When integers are converted in the other direction, the value is cast back into the original C type. If the value is too large to fit, it is silently
truncated.

unsigned char and signed char are special cases that are handled as small 8-bit integers. Normally, the char datatype is mapped as a one-character
ASCII string.

The boo1l datatype is cast to and from an integer value of 0 and 1 unless the target language provides a special boolean type.

Some care is required when working with large integer values. Most scripting languages use 32-bit integers so mapping a 64-bit long integer may lead to
truncation errors. Similar problems may arise with 32 bit unsigned integers (which may appear as large negative numbers). As a rule of thumb, the int datatype
and all variations of char and short datatypes are safe to use. Forunsigned int and long datatypes, you will need to carefully check the correct operation
of your program after it has been wrapped with SWIG.

Although the SWIG parser supports the Long long datatype, not all language modules support it. This is because long long usually exceeds the integer
precision available in the target language. In certain modules such as Tcl and Perl5, long long integers are encoded as strings. This allows the full range of
these numbers to be represented. However, it does not allow 1ong long values to be used in arithmetic expressions. It should also be noted that although 1ong
long is part of the ISO C99 standard, it is not universally supported by all C compilers. Make sure you are using a compiler that supports 1ong long before
trying to use this type with SWIG.

SWIG recognizes the following floating point types :

float
double

Floating point numbers are mapped to and from the natural representation of floats in the target language. This is almost always a C double. The rarely used
datatype of long double is not supported by SWIG.

The char datatype is mapped into a NULL terminated ASCII string with a single character. When used in a scripting language it shows up as a tiny string
containing the character value. When converting the value back into C, SWIG takes a character string from the scripting language and strips off the first character
as the char value. Thus if the value "foo" is assigned to a char datatype, it gets the value 'f'.

The char * datatype is handled as a NULL-terminated ASCII string. SWIG maps this into a 8-bit character string in the target scripting language. SWIG
converts character strings in the target language to NULL terminated strings before passing them into C/C++. The default handling of these strings does not allow
them to have embedded NULL bytes. Therefore, the char * datatype is not generally suitable for passing binary data. However, it is possible to change this
behavior by defining a SWIG typemap. See the chapter on Typemaps for details about this.

At this time, SWIG provides limited support for Unicode and wide-character strings (the C wchar_t type). Some languages provide typemaps for wchar_t, but
bear in mind these might not be portable across different operating systems. This is a delicate topic that is poorly understood by many programmers and not
implemented in a consistent manner across languages. For those scripting languages that provide Unicode support, Unicode strings are often available in an 8-bit
representation such as UTF-8 that can be mapped to the char * type (in which case the SWIG interface will probably work). If the program you are wrapping
uses Unicode, there is no guarantee that Unicode characters in the target language will use the same internal representation (e.g., UCS-2 vs. UCS-4). You may
need to write some special conversion functions.

5.2 Wrapping Simple C Declarations

37

SWIG-3.0 Documentation

5.2.2 Global Variables

Whenever possible, SWIG maps C/C++ global variables into scripting language variables. For example,

$module example
double foo;

results in a scripting language variable like this:

Tcl

set foo [3.5] ;# Set foo to 3.5
puts $foo ;# Print the value of foo
Python

cvar.foo = 3.5 # Set foo to 3.5
print cvar.foo # Print value of foo
Perl

$foo = 3.5; # Set foo to 3.5
print $foo,"\n"; # Print value of foo
Ruby

Module.foo = 3.5 # Set foo to 3.5
print Module.foo, "\n" # Print value of foo

Whenever the scripting language variable is used, the underlying C global variable is accessed. Although SWIG makes every attempt to make global variables
work like scripting language variables, it is not always possible to do so. For instance, in Python, all global variables must be accessed through a special variable
object known as cvar (shown above). In Ruby, variables are accessed as attributes of the module. Other languages may convert variables to a pair of accessor
functions. For example, the Java module generates a pair of functions double get foo () and set foo (double val) thatare used to manipulate the
value.

Finally, if a global variable has been declared as const, it only supports read-only access. Note: this behavior is new to SWIG-1.3. Earlier versions of SWIG
incorrectly handled const and created constants instead.

5.2.3 Constants

Constants can be created using #de fine, enumerations, or a special $constant directive. The following interface file shows a few valid constant declarations

#define I CONST 5 // An integer constant
#define PI 3.14159 // A Floating point constant
#define S CONST "hello world" // A string constant
#define NEWLINE '"\n' // Character constant

enum boolean {NO=0, YES=1};

enum months {JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG,
SEP, OCT, NOV, DEC};

%$constant double BLAH = 42.37;

#define PI_4 PI/4

#define FLAGS 0x04 | 0x08 | 0x40

In #define declarations, the type of a constant is inferred by syntax. For example, a number with a decimal point is assumed to be floating point. In addition,
SWIG must be able to fully resolve all of the symbols used in a #define in order for a constant to actually be created. This restriction is necessary because
#define is also used to define preprocessor macros that are definitely not meant to be part of the scripting language interface. For example:

#define EXTERN extern

EXTERN void foo();

In this case, you probably don't want to create a constant called EXTERN (what would the value be?). In general, SWIG will not create constants for macros
unless the value can be completely determined by the preprocessor. For instance, in the above example, the declaration

#define PI_4 PI/4

defines a constant because PI was already defined as a constant and the value is known. However, for the same conservative reasons even a constant with a
simple cast will be ignored, such as

#define F_CONST (double) 5 // A floating point constant with cast

5.2 Wrapping Simple C Declarations 38

SWIG-3.0 Documentation

The use of constant expressions is allowed, but SWIG does not evaluate them. Rather, it passes them through to the output file and lets the C compiler perform
the final evaluation (SWIG does perform a limited form of type-checking however).

For enumerations, it is critical that the original enum definition be included somewhere in the interface file (either in a header file or in the % {, $} block). SWIG
only translates the enumeration into code needed to add the constants to a scripting language. It needs the original enumeration declaration in order to get the
correct enum values as assigned by the C compiler.

The $constant directive is used to more precisely create constants corresponding to different C datatypes. Although it is not usually needed for simple values,
it is more useful when working with pointers and other more complex datatypes. Typically, $constant is only used when you want to add constants to the
scripting language interface that are not defined in the original header file.

5.2.4 A brief word about const

A common confusion with C programming is the semantic meaning of the const qualifier in declarations--especially when it is mixed with pointers and other
type modifiers. In fact, previous versions of SWIG handled const incorrectly--a situation that SWIG-1.3.7 and newer releases have fixed.

Starting with SWIG-1.3, all variable declarations, regardless of any use of const, are wrapped as global variables. If a declaration happens to be declared as
const, it is wrapped as a read-only variable. To tell if a variable is const or not, you need to look at the right-most occurrence of the const qualifier (that
appears before the variable name). If the right-most const occurs after all other type modifiers (such as pointers), then the variable is const. Otherwise, it is
not.

Here are some examples of const declarations.

const char a; // A constant character

char const b; // A constant character (the same)

char *const c; // A constant pointer to a character

const char *const d; // A constant pointer to a constant character

Here is an example of a declaration that is not const:

const char *e; // A pointer to a constant character. The pointer
// may be modified.

In this case, the pointer e can change---it's only the value being pointed to that is read-only.

Please note that for const parameters or return types used in a function, SWIG pretty much ignores the fact that these are const, see the section on const-
correctness for more information.

Compatibility Note: One reason for changing SWIG to handle const declarations as read-only variables is that there are many situations where the value of a
const variable might change. For example, a library might export a symbol as const in its public API to discourage modification, but still allow the value to
change through some other kind of internal mechanism. Furthermore, programmers often overlook the fact that with a constant declaration like char *const,
the underlying data being pointed to can be modified--it's only the pointer itself that is constant. In an embedded system, a const declaration might refer to a
read-only memory address such as the location of a memory-mapped I/O device port (where the value changes, but writing to the port is not supported by the
hardware). Rather than trying to build a bunch of special cases into the const qualifier, the new interpretation of const as "read-only" is simple and exactly
matches the actual semantics of const in C/C++. If you really want to create a constant as in older versions of SWIG, use the $constant directive instead. For
example:

%$constant double PI = 3.14159;

or

#ifdef SWIG

#define const %constant
#endif

const double foo 3.4;
const double bar 23.4;
const int spam = 42;
#ifdef SWIG

#undef const

#endif

5.2.5 A cautionary tale of char *

Before going any further, there is one bit of caution involving char * that must now be mentioned. When strings are passed from a scripting language to a C
char *, the pointer usually points to string data stored inside the interpreter. It is almost always a really bad idea to modify this data. Furthermore, some
languages may explicitly disallow it. For instance, in Python, strings are supposed to be immutable. If you violate this, you will probably receive a vast amount of
wrath when you unleash your module on the world.

The primary source of problems are functions that might modify string data in place. A classic example would be a function like this:

5.2 Wrapping Simple C Declarations 39

SWIG-3.0 Documentation

char *strcat (char *s, const char *t)

Although SWIG will certainly generate a wrapper for this, its behavior will be undefined. In fact, it will probably cause your application to crash with a
segmentation fault or other memory related problem. This is because s refers to some internal data in the target language---data that you shouldn't be touching.

The bottom line: don't rely on char * for anything other than read-only input values. However, it must be noted that you could change the behavior of SWIG

using typemaps.
5.3 Pointers and complex objects
Most C programs manipulate arrays, structures, and other types of objects. This section discusses the handling of these datatypes.

5.3.1 Simple pointers

Pointers to primitive C datatypes such as

int *
double **=*
char **

are fully supported by SWIG. Rather than trying to convert the data being pointed to into a scripting representation, SWIG simply encodes the pointer itself into a
representation that contains the actual value of the pointer and a type-tag. Thus, the SWIG representation of the above pointers (in Tcl), might look like this:

10081012 p int
~1008el124 ppp double
_f8ac pp char

A NULL pointer is represented by the string "NULL" or the value 0 encoded with type information.

All pointers are treated as opaque objects by SWIG. Thus, a pointer may be returned by a function and passed around to other C functions as needed. For all
practical purposes, the scripting language interface works in exactly the same way as you would use the pointer in a C program. The only difference is that there
is no mechanism for dereferencing the pointer since this would require the target language to understand the memory layout of the underlying object.

The scripting language representation of a pointer value should never be manipulated directly. Even though the values shown look like hexadecimal addresses,
the numbers used may differ from the actual machine address (e.g., on little-endian machines, the digits may appear in reverse order). Furthermore, SWIG does
not normally map pointers into high-level objects such as associative arrays or lists (for example, converting an int * into an list of integers). There are several

reasons why SWIG does not do this:

e There is not enough information in a C declaration to properly map pointers into higher level constructs. For example, an int * may indeed be an array of

integers, but if it contains ten million elements, converting it into a list object is probably a bad idea.
e The underlying semantics associated with a pointer is not known by SWIG. For instance, an int * might not be an array at all--perhaps it is an output

value!
e By handling all pointers in a consistent manner, the implementation of SWIG is greatly simplified and less prone to error.

5.3.2 Run time pointer type checking

By allowing pointers to be manipulated from a scripting language, extension modules effectively bypass compile-time type checking in the C/C++ compiler. To
prevent errors, a type signature is encoded into all pointer values and is used to perform run-time type checking. This type-checking process is an integral part of
SWIG and can not be disabled or modified without using typemaps (described in later chapters).

Like C, void * matches any kind of pointer. Furthermore, NULL pointers can be passed to any function that expects to receive a pointer. Although this has the
potential to cause a crash, NULL pointers are also sometimes used as sentinel values or to denote a missing/empty value. Therefore, SWIG leaves NULL pointer

checking up to the application.
5.3.3 Derived types, structs, and classes
For everything else (structs, classes, arrays, etc...) SWIG applies a very simple rule :
Everything else is a pointer

In other words, SWIG manipulates everything else by reference. This model makes sense because most C/C++ programs make heavy use of pointers and SWIG
can use the type-checked pointer mechanism already present for handling pointers to basic datatypes.

Although this probably sounds complicated, it's really quite simple. Suppose you have an interface file like this :

$module fileio

FILE *fopen(char *, char *);

int fclose (FILE *);

unsigned fread(void *ptr, unsigned size, unsigned nobj, FILE *);
unsigned fwrite(void *ptr, unsigned size, unsigned nobj, FILE *);
void *malloc (int nbytes);

void free(void *);

5.3 Pointers and complex objects 40

SWIG-3.0 Documentation

In this file, SWIG doesn't know what a FILE is, but since it's used as a pointer, so it doesn't really matter what it is. If you wrapped this module into Python, you
can use the functions just like you expect :

Copy a file
def filecopy (source,target) :
f1 = fopen (source,"r")
f2 = fopen (target,"w")
buffer = malloc(8192)
nbytes = fread(buffer,8192,1,f1)
while (nbytes > 0):
fwrite (buffer,8192,1,£2)
nbytes = fread(buffer,8192,1,f1)
free (buffer)

In this case £1, £2, and buf fer are all opaque objects containing C pointers. It doesn't matter what value they contain--our program works just fine without this
knowledge.

5.3.4 Undefined datatypes

When SWIG encounters an undeclared datatype, it automatically assumes that it is a structure or class. For example, suppose the following function appeared in a
SWIG input file:

void matrix multiply(Matrix *a, Matrix *b, Matrix *c);

SWIG has no idea what a "Matrix" is. However, it is obviously a pointer to something so SWIG generates a wrapper using its generic pointer handling code.

Unlike C or C++, SWIG does not actually care whether Mat rix has been previously defined in the interface file or not. This allows SWIG to generate interfaces
from only partial or limited information. In some cases, you may not care what a Matrix really is as long as you can pass an opaque reference to one around in
the scripting language interface.

An important detail to mention is that SWIG will gladly generate wrappers for an interface when there are unspecified type names. However, all unspecified
types are internally handled as pointers to structures or classes! For example, consider the following declaration:

void foo(size t num);

If size t isundeclared, SWIG generates wrappers that expect to receive a type of size t * (this mapping is described shortly). As a result, the scripting
interface might behave strangely. For example:

foo (40);
TypeError: expected a p size t.

The only way to fix this problem is to make sure you properly declare type names using t ypedef.

5.3.5 Typedef

Like C, typedef can be used to define new type names in SWIG. For example:

typedef unsigned int size t;

typedef definitions appearing in a SWIG interface are not propagated to the generated wrapper code. Therefore, they either need to be defined in an included
header file or placed in the declarations section like this:

S 1

/* Include in the generated wrapper file */
typedef unsigned int size t;

S}

/* Tell SWIG about it */

typedef unsigned int size t;

or

$inline %{
typedef unsigned int size t;

%}

In certain cases, you might be able to include other header files to collect type information. For example:

5.3 Pointers and complex objects 41

SWIG-3.0 Documentation

$module example
$import "sys/types.h"

In this case, you might run SWIG as follows:

$ swig -I/usr/include -includeall example.i

It should be noted that your mileage will vary greatly here. System headers are notoriously complicated and may rely upon a variety of non-standard C coding
extensions (e.g., such as special directives to GCC). Unless you exactly specify the right include directories and preprocessor symbols, this may not work
correctly (you will have to experiment).

SWIG tracks typedef declarations and uses this information for run-time type checking. For instance, if you use the above t ypedef and had the following
function declaration:

void foo(unsigned int *ptr);

The corresponding wrapper function will accept arguments of type unsigned int *orsize t *.
5.4 Other Practicalities

So far, this chapter has presented almost everything you need to know to use SWIG for simple interfaces. However, some C programs use idioms that are
somewhat more difficult to map to a scripting language interface. This section describes some of these issues.

5.4.1 Passing structures by value

Sometimes a C function takes structure parameters that are passed by value. For example, consider the following function:

double dot product (Vector a, Vector b);

To deal with this, SWIG transforms the function to use pointers by creating a wrapper equivalent to the following:

double wrap_dot product (Vector *a, Vector *b) ({
Vector x = *a;
Vector y = *b;
return dot product(x,y);

In the target language, the dot product () function now accepts pointers to Vectors instead of Vectors. For the most part, this transformation is transparent so
you might not notice.

5.4.2 Return by value

C functions that return structures or classes datatypes by value are more difficult to handle. Consider the following function:

Vector cross_product (Vector vl, Vector v2);

This function wants to return Vector, but SWIG only really supports pointers. As a result, SWIG creates a wrapper like this:

Vector *wrap cross product (Vector *vl, Vector *v2) ({
Vector x = *vl;
Vector y = *v2;
Vector *result;
result = (Vector *) malloc(sizeof (Vector));
* (result) = cross(x,Vy);
return result;

or if SWIG was run with the —c++ option:

Vector *wrap cross (Vector *vl, Vector *v2) {
Vector x = *vl;
Vector y = *v2;
Vector *result = new Vector(cross(x,y)); // Uses default copy constructor
return result;

5.4 Other Practicalities

SWIG-3.0 Documentation

In both cases, SWIG allocates a new object and returns a reference to it. It is up to the user to delete the returned object when it is no longer in use. Clearly, this
will leak memory if you are unaware of the implicit memory allocation and don't take steps to free the result. That said, it should be noted that some language
modules can now automatically track newly created objects and reclaim memory for you. Consult the documentation for each language module for more details.

It should also be noted that the handling of pass/return by value in C++ has some special cases. For example, the above code fragments don't work correctly if
Vector doesn't define a default constructor. The section on SWIG and C++ has more information about this case.

5.4.3 Linking to structure variables

When global variables or class members involving structures are encountered, SWIG handles them as pointers. For example, a global variable like this

Vector unit i;

gets mapped to an underlying pair of set/get functions like this :

Vector *unit i get () {
return &unit i;

}

void unit i set (Vector *value) {
unit i = *value;

}

Again some caution is in order. A global variable created in this manner will show up as a pointer in the target scripting language. It would be an extremely bad
idea to free or destroy such a pointer. Also, C++ classes must supply a properly defined copy constructor in order for assignment to work correctly.

5.4.4 Linking to char *

When a global variable of type char * appears, SWIG uses malloc () or new to allocate memory for the new value. Specifically, if you have a variable like
this

char *foo;

SWIG generates the following code:

/* C mode */

void foo set(char *value) {
if (foo) free(foo);
foo = (char *) malloc(strlen(value)+l);
strcpy (foo,value) ;

/* C++ mode. When -c++ option is used */
void foo set(char *value) {
if (foo) delete [] foo;
foo = new char[strlen(value)+1];
strcpy (foo,value) ;

If this is not the behavior that you want, consider making the variable read-only using the $immutable directive. Alternatively, you might write a short assist-
function to set the value exactly like you want. For example:

%inline %{
void set foo(char *value) {
strncpy (foo,value, 50);
}

o°

Note: If you write an assist function like this, you will have to call it as a function from the target scripting language (it does not work like a variable). For
example, in Python you will have to write:

>>> set foo("Hello World")

A common mistake with char * variables is to link to a variable declared like this:

char *VERSION = "1.0";

5.4 Other Practicalities

SWIG-3.0 Documentation

In this case, the variable will be readable, but any attempt to change the value results in a segmentation or general protection fault. This is due to the fact that
SWIG is trying to release the old value using free or delete when the string literal value currently assigned to the variable wasn't allocated using malloc ()
or new. To fix this behavior, you can either mark the variable as read-only, write a typemap (as described in Chapter 6), or write a special set function as shown.
Another alternative is to declare the variable as an array:

char VERSION[64] = "1.0";

When variables of type const char * are declared, SWIG still generates functions for setting and getting the value. However, the default behavior does not
release the previous contents (resulting in a possible memory leak). In fact, you may get a warning message such as this when wrapping such a variable:

example.i:20. Typemap warning. Setting const char * variable may leak memory

The reason for this behavior is that const char * variables are often used to point to string literals. For example:

const char *foo = "Hello World\n";

Therefore, it's a really bad idea to call £ree () on such a pointer. On the other hand, it is legal to change the pointer to point to some other value. When setting a
variable of this type, SWIG allocates a new string (using malloc or new) and changes the pointer to point to the new value. However, repeated modifications of
the value will result in a memory leak since the old value is not released.

5.4.5 Arrays

Arrays are fully supported by SWIG, but they are always handled as pointers instead of mapping them to a special array object or list in the target language. Thus,
the following declarations :

int foobar (int a[40]);
void grok(char *argv([]);
void transpose (double a[20][20]);

are processed as if they were really declared like this:

int foobar (int *a);
void grok(char **argv);
void transpose (double (*a) [20]);

Like C, SWIG does not perform array bounds checking. It is up to the user to make sure the pointer points to a suitably allocated region of memory.

Multi-dimensional arrays are transformed into a pointer to an array of one less dimension. For example:

int [10]; // Maps to int *
int [10][20]; // Maps to int (*)[20]
int [10][20]1([30]; // Maps to int (*)[20]1[30]

It is important to note that in the C type system, a multidimensional array a [] [] is NOT equivalent to a single pointer *a or a double pointer such as * *a.
Instead, a pointer to an array is used (as shown above) where the actual value of the pointer is the starting memory location of the array. The reader is strongly
advised to dust off their C book and re-read the section on arrays before using them with SWIG.

Array variables are supported, but are read-only by default. For example:

int a[100][200];

In this case, reading the variable 'a' returns a pointer of type int (*) [200] that points to the first element of the array &a [0] [0]. Trying to modify 'a’ results
in an error. This is because SWIG does not know how to copy data from the target language into the array. To work around this limitation, you may want to write
a few simple assist functions like this:

$inline %{

void a set(int i, int j, int wval) {
alil[j] = val;

}

int a get(int i, int j) {
return ali][j];

o0 —

To dynamically create arrays of various sizes and shapes, it may be useful to write some helper functions in your interface. For example:

5.4 Other Practicalities

SWIG-3.0 Documentation

// Some array helpers
$inline %{
/* Create any sort of [size] array */
int *int array(int size) {
return (int *) malloc(size*sizeof (int));
}
/* Create a two-dimension array [size][10] */
int (*int array 10(int size)) [10] {
return (int (*)[10]) malloc(size*10*sizeof (int));

o°

Arrays of char are handled as a special case by SWIG. In this case, strings in the target language can be stored in the array. For example, if you have a

declaration like this,

char pathname[256];

SWIG generates functions for both getting and setting the value that are equivalent to the following code:

char *pathname get () {
return pathname;

}

void pathname set (char *value) {
strncpy (pathname, value, 256) ;

}

In the target language, the value can be set like a normal variable.

5.4.6 Creating read-only variables

A read-only variable can be created by using the $immutable directive as shown :

// File : interface.i

int a; // Can read/write
$immutable;

ik To,e,cl // Read only variables
smutable;

double x,y; // read/write

The $immutable directive enables read-only mode until it is explicitly disabled using the $mutable directive. As an alternative to turning read-only mode off

and on like this, individual declarations can also be tagged as immutable. For example:

$immutable x; // Make x read-only

double x; // Read-only (from earlier $immutable directive)

double vy; // Read-write

The $mutable and $immutable directives are actually %feature directives defined like this:

#define $immutable $feature ("immutable")
#define %Smutable $feature ("immutable","")

If you wanted to make all wrapped variables read-only, barring one or two, it might be easier to take this approach:

// Make all variables read-only

$immutable;
// except, make x read/write

$feature ("immutable","0") x;
double x;
double y;
double z;

Read-only variables are also created when declarations are declared as const. For example:

const int foo; /* Read only variable */

5.4 Other Practicalities

45

SWIG-3.0 Documentation

char * const version="1.0"; /* Read only variable */

Compatibility note: Read-only access used to be controlled by a pair of directives $readonly and $readwrite. Although these directives still work, they
generate a warning message. Simply change the directives to $immutable; and $mutable; to silence the warning. Don't forget the extra semicolon!

5.4.7 Renaming and ignoring declarations
5.4.7.1 Simple renaming of specific identifiers

Normally, the name of a C declaration is used when that declaration is wrapped into the target language. However, this may generate a conflict with a keyword or
already existing function in the scripting language. To resolve a name conflict, you can use the $rename directive as shown :

// interface.i

%rename (my print) print;
extern void print (const char *);

$rename (foo) a really long and annoying name;
extern int a really long and annoying name;

SWIG still calls the correct C function, but in this case the function print () will really be called "my print ()" in the target language.

The placement of the $rename directive is arbitrary as long as it appears before the declarations to be renamed. A common technique is to write code for
wrapping a header file like this:

// interface.i

%rename (my print) print;
%rename (foo) a really long and annoying name;

%$include "header.h"

%rename applies a renaming operation to all future occurrences of a name. The renaming applies to functions, variables, class and structure names, member
functions, and member data. For example, if you had two-dozen C++ classes, all with a member function named “print' (which is a keyword in Python), you could
rename them all to “output' by specifying :

$rename (output) print; // Rename all ‘print' functions to ‘output'

SWIG does not normally perform any checks to see if the functions it wraps are already defined in the target scripting language. However, if you are careful
about namespaces and your use of modules, you can usually avoid these problems.

Closely related to $rename is the $ignore directive. $ignore instructs SWIG to ignore declarations that match a given identifier. For example:

%$ignore print; // Ignore all declarations named print
%$ignore MYMACRO; // Ignore a macro

#define MYMACRO 123
void print (const char *);

Any function, variable etc which matches $ignore will not be wrapped and therefore will not be available from the target language. A common usage of
%ignore is to selectively remove certain declarations from a header file without having to add conditional compilation to the header. However, it should be
stressed that this only works for simple declarations. If you need to remove a whole section of problematic code, the SWIG preprocessor should be used instead.

Compatibility note: Older versions of SWIG provided a special $name directive for renaming declarations. For example:

%name (output) extern void print (const char *);

This directive is still supported, but it is deprecated and should probably be avoided. The $rename directive is more powerful and better supports wrapping of
raw header file information.

5.4.7.2 Advanced renaming support

While writing $rename for specific declarations is simple enough, sometimes the same renaming rule needs to be applied to many, maybe all, identifiers in the
SWIG input. For example, it may be necessary to apply some transformation to all the names in the target language to better follow its naming conventions, like
adding a specific prefix to all wrapped functions. Doing it individually for each function is impractical so SWIG supports applying a renaming rule to all
declarations if the name of the identifier to be renamed is not specified:

5.4 Other Practicalities

46

SWIG-3.0 Documentation

$rename ("myprefix %s") ""; // print -> myprefix print

This also shows that the argument of $rename doesn't have to be a literal string but can be a printf () -like format string. In the simplest form, "$s" is
replaced with the name of the original declaration, as shown above. However this is not always enough and SWIG provides extensions to the usual format string
syntax to allow applying a (SWIG-defined) function to the argument. For example, to wrap all C functions do_something long () as more Java-like
doSomethingLong () you can use the "lowercamelcase" extended format specifier like this:

$rename ("% (lowercamelcase)s") ""; // foo bar -> fooBar; FooBar -> fooBar

Some functions can be parametrized, for example the "strip" one strips the provided prefix from its argument. The prefix is specified as part of the format
string, following a colon after the function name:

$rename ("% (strip: [wx])s"™) ""; // wxHello -> Hello; FooBar -> FooBar

Below is the table summarizing all currently defined functions with an example of applying each one. Note that some of them have two names, a shorter one and a
more descriptive one, but the two functions are otherwise equivalent:

Function Returns Example (in/out)
uppercase or upper Upper case version of the string. Print PRINT
lowercase or lower Lower case version of the string. Print print
title String with first letter capitalized and the rest in lower case. print Print
firstuppercase String with the first letter capitalized and the rest unchanged. printIt PrintIt
firstlowercase String with the first letter in lower case and the rest unchanged. PrintIt printIt

String with capitalized first letter and any letter following an underscore (which are

camelcaseorctitle . . print it PrintIt
removed in the process) and rest in lower case. -

lowercamelcase or String with every letter following an underscore (which is removed in the process)) .)

. T . . . print it printIt

lctitle capitalized and rest, including the first letter, in lower case. -
Lower case string with underscores inserted before every upper case letter in the original

undercaseorutitle string and any number not at the end of string. Logically, this is the reverse of PrintIt print_it
camelcase.

schemi fy Strmg with all underscores replaced with dashes, resulting in more Lispers/Schemers- print it print-it
pleasing name. B

strip: [prefix] String without the given prefix or the original string if it doesn't start with this prefix. Note WxPTint Print

that square brackets should be used literally, e.g. $rename ("strip: [wx]")

String after (Perl-like) regex substitution operation. This function allows to apply arbitrary
regular expressions to the identifier names. The pattern part is a regular expression in Perl
syntax (as supported by the Perl Compatible Regular Expressions (PCRE)) library and the
subst string can contain back-references of the form \N where N is a digit from 0 to 9, or
one of the following escape sequences: \ 1, \L, \u, \U or \E. The back-references are
replaced with the contents of the corresponding capture group while the escape sequences
perform the case conversion in the substitution string: \ 1 and \ L convert to the lower case,
while \u and \U convert to the upper case. The difference between the elements of each
pair is that \ 1 and \u change the case of the next character only, while \L and \U do it for
all the remaining characters or until \E is encountered. Finally please notice that
backslashes need to be escaped in C strings, so in practice "\ \ " must be used in all these
escape sequences. For example, to remove any alphabetic prefix before an underscore and
capitalize the remaining part you could use the following directive:

$rename ("regex:/ (\\w+) _(.*)/\\u\\2/")

regex:/pattern/subst/ prefix print | Print

Output of an external command cmd with the string passed to it as input. Notice that this
function is extremely slow compared to all the other ones as it involves spawning a separate
process and using it for many declarations is not recommended. The cmd is not enclosed in
square brackets but must be terminated with a triple '<"' sign, e.g.

$rename ("command:tr -d aeiou <<<") (nonsensical example removing all
vowels)

command: cmd Print Prnt

The most general function of all of the above ones (not counting command which is even more powerful in principle but which should generally be avoided
because of performance considerations) is the regex one. Here are some more examples of its use:

// Strip the wx prefix from all identifiers except those starting with wxEVT
$rename ("% (regex:/wx (? 'EVT) (.*)/\\1/)s"™) ""; // wxSomeWidget -> SomeWidget
// wxEVT PAINT -> wxEVT PAINT

// Rpply a rule for renaming the enum elements to avoid the common prefixes
// which are redundant in C#/Java

5.4 Other Practicalities

47

http://www.pcre.org/

SWIG-3.0 Documentation

$rename ("% (regex:/” ([A-Z] [a-z]+)+_ (.*)/\\2/)s", %Sisenumitem) ""; // Colour Red -> Red

// Remove all "Set/Get" prefixes.
$rename ("% (regex: /" (Set|Get) (.*)/\\2/)s"™) ""; // SetValue -> Value
// GetValue -> Value

As before, everything that was said above about $rename also applies to $ignore. In fact, the latter is just a special case of the former and ignoring an
identifier is the same as renaming it to the special "$ignore" value. So the following snippets

%$ignore print;

and

$rename ("$ignore™) print;

are exactly equivalent and $ rename can be used to selectively ignore multiple declarations using the previously described matching possibilities.
5.4.7.3 Limiting global renaming rules
As explained in the previous sections, it is possible to either rename individual declarations or apply a rename rule to all of them at once. In practice, the latter is

however rarely appropriate as there are always some exceptions to the general rules. To deal with them, the scope of an unnamed % rename can be limited using
subsequent match parameters. They can be applied to any of the attributes associated by SWIG with the declarations appearing in its input. For example:

$rename ("foo", match$name="bar") "";

can be used to achieve the same effect as the simpler

%rename ("foo") bar;

and so is not very interesting on its own. However match can also be applied to the declaration type, for example match="class" restricts the match to class
declarations only (in C++) and match="enumitem" restricts it to the enum elements. SWIG also provides convenience macros for such match expressions, for
example

$rename ("% (title)s", %$S$isenumitem) "";

will capitalize the names of all the enum elements but not change the case of the other declarations. Similarly, $$isclass, $$isfunction,
%$isconstructor, $$isunion, $$istemplate, and $$isvariable can be used. Many other checks are possible and this documentation is not
exhaustive, see the "%rename predicates" section in swig. swg for the full list of supported match expressions.

In addition to literally matching some string with match you can also use regexmatch or notregexmatch to match a string against a regular expression.
For example, to ignore all functions having "Old" as a suffix you could use

$rename ("$ignore", regexmatch$name="01d$") "";

For simple cases like this, specifying the regular expression for the declaration name directly can be preferable and can also be done using regextarget:

$rename ("$ignore", regextarget=1) "0ldS$";

Notice that the check is done only against the name of the declaration itself, if you need to match the full name of a C++ declaration you must use fullname
attribute:

$rename ("$ignore", regextarget=1, fullname=1) "NameSpace::ClassName::.*0ldS$";

As for notregexmatch, it restricts the match only to the strings not matching the specified regular expression. So to rename all declarations to lower case
except those consisting of capital letters only:

$rename ("$ (lower)s", notregexmatch$name=""[A-Z]+S$") "";

Finally, variants of $rename and $ignore directives can be used to help wrap C++ overloaded functions and methods or C++ methods which use default
arguments. This is described in the Ambiguity resolution and renaming section in the C++ chapter.

5.4.7.4 Ignoring everything then wrapping a few selected symbols

5.4 Other Practicalities

SWIG-3.0 Documentation

Using the techniques described above it is possible to ignore everything in a header and then selectively wrap a few chosen methods or classes. For example,

consider a header, myheader . h which has many classes in it and just the one class called Star is wanted within this header, the following approach could be
taken:

$ignore ""; // Ignore everything

// Unignore chosen class 'Star'
$rename ("%s") Star;

// As the ignore everything will include the constructor, destructor, methods etc
// in the class, these have to be explicitly unignored too:

$rename ("%$s") Star::Star;
$rename ("%s") Star::~Star;

$rename ("%$s"™) Star::shine; // named method

%$include "myheader.h"

Another approach which might be more suitable as it does not require naming all the methods in the chosen class is to begin by ignoring just the classes. This does
not add an explicit ignore to any members of the class, so when the chosen class is unignored, all of its methods will be wrapped.

$rename ($ignore, %$$isclass) ""; // Only ignore all classes
$rename ("%$s") Star; // Unignore 'Star'

%$include "myheader.h"

5.4.8 Default/optional arguments

SWIG supports default arguments in both C and C++ code. For example:

int plot(double x, double y, int color=WHITE) ;

In this case, SWIG generates wrapper code where the default arguments are optional in the target language. For example, this function could be used in Tcl as
follows :

plot -3.4 7.5 # Use default value
plot -3.4 7.5 10 # set color to 10 instead

o
S
o
S

Although the ANSI C standard does not allow default arguments, default arguments specified in a SWIG interface work with both C and C++.

Note: There is a subtle semantic issue concerning the use of default arguments and the SWIG generated wrapper code. When default arguments are used in C
code, the default values are emitted into the wrappers and the function is invoked with a full set of arguments. This is different to when wrapping C++ where an
overloaded wrapper method is generated for each defaulted argument. Please refer to the section on default arguments in the C++ chapter for further details.

5.4.9 Pointers to functions and callbacks

Occasionally, a C library may include functions that expect to receive pointers to functions--possibly to serve as callbacks. SWIG provides full support for
function pointers provided that the callback functions are defined in C and not in the target language. For example, consider a function like this:

int binary op(int a, int b, int (*op) (int,int));

When you first wrap something like this into an extension module, you may find the function to be impossible to use. For instance, in Python:

>>> def add(x,y):
return x+y

>>> binary op(3,4,add)
Traceback (most recent call last):
File "<stdin>", line 1, in ?
TypeError: Type error. Expected p f int int int
>>>

The reason for this error is that SWIG doesn't know how to map a scripting language function into a C callback. However, existing C functions can be used as
arguments provided you install them as constants. One way to do this is to use the $constant directive like this:

/* Function with a callback */
int binary op(int a, int b, int (*op) (int,int));

/* Some callback functions */

5.4 Other Practicalities

SWIG-3.0 Documentation

%constant int add(int,int);
%constant int sub(int,int);
$constant int mul (int, int);

In this case, add, sub, and mul become function pointer constants in the target scripting language. This allows you to use them as follows:

>>> binary op(3,4,add)
7

>>> binary op(3,4,mul)
12

>>>

Unfortunately, by declaring the callback functions as constants, they are no longer accessible as functions. For example:

>>> add(3,4)
Traceback (most recent call last):
File "<stdin>", line 1, in ?
TypeError: object is not callable: ' ff020efc p f int int int'
>>>

If you want to make a function available as both a callback function and a function, you can use the $callback and $nocallback directives like this:

/* Function with a callback */
int binary op(int a, int b, int (*op) (int,int));

/* Some callback functions */
%callback("%s_cb");

int add(int, int);

int sub (int, int);

int mul (int, int);
$nocallback;

The argument to $callback is a printf-style format string that specifies the naming convention for the callback constants (%s gets replaced by the function
name). The callback mode remains in effect until it is explicitly disabled using $nocallback. When you do this, the interface now works as follows:

>>> binary op(3,4,add cb)
7

>>> binary op(3,4,mul cb)
12

>>> add(3,4)

7

>>> mul (3,4)

12

Notice that when the function is used as a callback, special names such as add_cb are used instead. To call the function normally, just use the original function
name such as add () .

SWIG provides a number of extensions to standard C printf formatting that may be useful in this context. For instance, the following variation installs the
callbacks as all upper case constants such as ADD, SUB, and MUL:

/* Some callback functions */
%callback ("% (uppercase)s") ;
int add(int, int);

int sub (int, int);

int mul (int, int);
%nocallback;

A format string of "% (lLowercase) s" converts all characters to lower case. A string of "% (title) s" capitalizes the first character and converts the rest to
lower case.

And now, a final note about function pointer support. Although SWIG does not normally allow callback functions to be written in the target language, this can be
accomplished with the use of typemaps and other advanced SWIG features. See the Typemaps chapter for more about typemaps and individual target language
chapters for more on callbacks and the 'director' feature.

5.5 Structures and unions

This section describes the behavior of SWIG when processing ANSI C structures and union declarations. Extensions to handle C++ are described in the next
section.

5.5 Structures and unions 50

SWIG-3.0 Documentation

If SWIG encounters the definition of a structure or union, it creates a set of accessor functions. Although SWIG does not need structure definitions to build an
interface, providing definitions makes it possible to access structure members. The accessor functions generated by SWIG simply take a pointer to an object and
allow access to an individual member. For example, the declaration :

struct Vector {
double x,y,z;

gets transformed into the following set of accessor functions :

double Vector x get(struct Vector *obj) {
return obj->x;

}

double Vector y get(struct Vector *obj) {
return obj->y;

}

double Vector z get(struct Vector *obj) {
return obj->z;

}

void Vector x set(struct Vector *obj, double value) {
obj->x = value;

}

void Vector y set(struct Vector *obj, double value) {
obj->y = value;

}

void Vector z set(struct Vector *obj, double value) {
obj->z = value;

}

In addition, SWIG creates default constructor and destructor functions if none are defined in the interface. For example:

struct Vector *new Vector () {
return (Vector *) calloc(l,sizeof (struct Vector));
}
void delete Vector(struct Vector *obj) ({
free (obj) ;
}

Using these low-level accessor functions, an object can be minimally manipulated from the target language using code like this:

v = new Vector ()
Vector x set(v,2)
Vector y set(v,10)
Vector z set (v,-5)

delete Vector (v)

However, most of SWIG's language modules also provide a high-level interface that is more convenient. Keep reading.
5.5.1 Typedef and structures

SWIG supports the following construct which is quite common in C programs :

typedef struct {
double x,y,z;
} Vector;

When encountered, SWIG assumes that the name of the object is "Vector' and creates accessor functions like before. The only difference is that the use of
typedef allows SWIG to drop the struct keyword on its generated code. For example:

double Vector x get (Vector *obj) {
return obj->x;

}

If two different names are used like this :

5.5 Structures and unions

SWIG-3.0 Documentation

typedef struct vector struct {
double x,y,z;
} Vector;

the name Vector is used instead of vector struct since this is more typical C programming style. If declarations defined later in the interface use the type
struct vector struct, SWIG knows that this is the same as Vector and it generates the appropriate type-checking code.

5.5.2 Character strings and structures
Structures involving character strings require some care. SWIG assumes that all members of type char * have been dynamically allocated using malloc ()
and that they are NULL-terminated ASCII strings. When such a member is modified, the previous contents will be released, and the new contents allocated. For

example :

$module mymodule

struct Foo {
char *name;

This results in the following accessor functions :

char *Foo name get (Foo *obj) {
return Foo->name;

}

char *Foo name set (Foo *obj, char *c) {

if (obj->name)
free (obj->name) ;

obj->name = (char *) malloc(strlen(c)+1l);

strcpy (obj->name, c) ;

return obj->name;

If this behavior differs from what you need in your applications, the SWIG "memberin" typemap can be used to change it. See the typemaps chapter for further
details.

Note: If the —c++ option is used, new and delete are used to perform memory allocation.

5.5.3 Array members
Arrays may appear as the members of structures, but they will be read-only. SWIG will write an accessor function that returns the pointer to the first element of
the array, but will not write a function to change the contents of the array itself. When this situation is detected, SWIG may generate a warning message such as

the following :

interface.i:116. Warning. Array member will be read-only

To eliminate the warning message, typemaps can be used, but this is discussed in a later chapter. In many cases, the warning message is harmless.

5.5.4 Structure data members

Occasionally, a structure will contain data members that are themselves structures. For example:

typedef struct Foo {
int x;
} Foo;

typedef struct Bar {
int y;
Foo £f;

} Bar;

/* struct member */

When a structure member is wrapped, it is handled as a pointer, unless the $naturalvar directive is used where it is handled more like a C++ reference (see

C++ Member data). The accessors to the member variable as a pointer are effectively wrapped as follows:

Foo *Bar f get(Bar *Db) {
return &b->f;
}

5.5 Structures and unions

SWIG-3.0 Documentation

void Bar f set(Bar *b, Foo *value) {
b->f = *value;
}

The reasons for this are somewhat subtle but have to do with the problem of modifying and accessing data inside the data member. For example, suppose you
wanted to modify the value of £ . x of a Bar object like this:

Bar *b;
b->f.x = 37;

Translating this assignment to function calls (as would be used inside the scripting language interface) results in the following code:

Bar *b;
Foo x set(Bar f get(b),37);

In this code, if the Bar £ get () function were to return a Foo instead of a Foo *, then the resulting modification would be applied to a copy of £ and not the
data member £ itself. Clearly that's not what you want!

It should be noted that this transformation to pointers only occurs if SWIG knows that a data member is a structure or class. For instance, if you had a structure
like this,

struct Foo {
WORD wW;
}i

and nothing was known about WORD, then SWIG will generate more normal accessor functions like this:

WORD Foo_w_get (Foo *f) {
return f->w;

}

void Foo_w_set (FOO *f, WORD value) {
f->w = value;

}

Compatibility Note: SWIG-1.3.11 and earlier releases transformed all non-primitive member datatypes to pointers. Starting in SWIG-1.3.12, this transformation
only occurs if a datatype is known to be a structure, class, or union. This is unlikely to break existing code. However, if you need to tell SWIG that an undeclared
datatype is really a struct, simply use a forward struct declaration such as "struct Foo;".

5.5.5 C constructors and destructors
When wrapping structures, it is generally useful to have a mechanism for creating and destroying objects. If you don't do anything, SWIG will automatically
generate functions for creating and destroying objects using malloc () and free (). Note: the use of malloc () only applies when SWIG is used on C code

(i.e., when the —c++ option is not supplied on the command line). C++ is handled differently.

If you don't want SWIG to generate default constructors for your interfaces, you can use the $nodefaultctor directive or the -nodefaultctor command
line option. For example:

swig -nodefaultctor example.i

or

$module foo

$nodefaultctor; // Don't create default constructors

declarations
%clearnodefaultctor; // Re-enable default constructors

If you need more precise control, $nodefaultctor can selectively target individual structure definitions. For example:

$nodefaultctor Foo; // No default constructor for Foo
struct Foo { // No default constructor generated.
}i

struct Bar { // Default constructor generated.

}i

5.5 Structures and unions

53

SWIG-3.0 Documentation

Since ignoring the implicit or default destructors most of the time produces memory leaks, SWIG will always try to generate them. If needed, however, you can

selectively disable the generation of the default/implicit destructor by using $nodefaultdtor

$nodefaultdtor Foo; // No default/implicit destructor for Foo

struct Foo { // No default destructor is generated.
}i

struct Bar { // Default destructor generated.
}i

Compatibility note: Prior to SWIG-1.3.7, SWIG did not generate default constructors or destructors unless you explicitly turned them on using -

make default. However, it appears that most users want to have constructor and destructor functions so it has now been enabled as the default behavior.

Note: There are also the -nodefault option and $nodefault directive, which disable both the default or implicit destructor generation. This could lead to

memory leaks across the target languages, and it is highly recommended you don't use them.

5.5.6 Adding member functions to C structures

Most languages provide a mechanism for creating classes and supporting object oriented programming. From a C standpoint, object oriented programming really
just boils down to the process of attaching functions to structures. These functions normally operate on an instance of the structure (or object). Although there is a
natural mapping of C++ to such a scheme, there is no direct mechanism for utilizing it with C code. However, SWIG provides a special $extend directive that
makes it possible to attach methods to C structures for purposes of building an object oriented interface. Suppose you have a C header file with the following

declaration :

/* file : vector.h */

typedef struct Vector {
double x,y,z;
} Vector;

You can make a Vector look a lot like a class by writing a SWIG interface like this:

// file : vector.i
$module mymodule

%{

#include "vector.h"

%}

$include "vector.h" // Just grab original C header file
$extend Vector { // Attach these functions to struct Vector

Vector (double x, double y, double z) {
Vector *v;

v = (Vector *) malloc(sizeof (Vector)):;
vV->X = X;
v->y = y;i
V—>Z = Z;

return v;
}
~Vector () {
free ($self);
}
double magnitude () {
return sqrt($self->x*$self->x+$self->y*$self->y+$self->z*$self->z);
}
void print () {
printf ("Vector [%g, %g, %g]\n", S$self->x,$self->y,S$self->z);

Note the usage of the $self special variable. Its usage is identical to a C++ 'this' pointer and should be used whenever access to the struct instance is required.
Also note that C++ constructor and destructor syntax has been used to simulate a constructor and destructor, even for C code. There is one subtle difference to a
normal C++ constructor implementation though and that is although the constructor declaration is as per a normal C++ constructor, the newly constructed object

must be returned as if the constructor declaration had a return value, a Vector * in this case.

Now, when used with proxy classes in Python, you can do things like this :

>>> v = Vector(3,4,0) # Create a new vector
>>> print v.magnitude () # Print magnitude
5.0

>>> v.print () # Print it out

5.5 Structures and unions

54

SWIG-3.0 Documentation

[3, 4, 01
>>> del v # Destroy it

The $extend directive can also be used inside the definition of the Vector structure. For example:

// file : vector.i
$module mymodule

%{

#include "vector.h"

%}

typedef struct Vector {
double x,y,z;
%extend {

Vector (double x, double y, double z) { ... }
~Vector() { ... }
}
} Vector;

Note that $extend can be used to access externally written functions provided they follow the naming convention used in this example :

/* File : vector.c */

/* Vector methods */

#include "vector.h"

Vector *new Vector (double x, double y, double z) {
Vector *v;

v = (Vector *) malloc(sizeof (Vector)):;
v->X = X;
v->y yi
v->z = 2zZ;

return v;
}
void delete Vector (Vector *v) ({
free(v);
}

double Vector magnitude (Vector *v) {
return sqrt (v->x*v->x+v->y* *v->y+tv->z*v->2z);

}

// File : vector.i
// Interface file
$module mymodule

S{

#include "vector.h"

%}

typedef struct Vector {

double x,y,2z;

%extend {
Vector (int,int,int); // This calls new Vector()
~Vector(); // This calls delete Vector ()
double magnitude(); // This will call Vector magnitude ()

}
} Vector;

The name used for %extend should be the name of the struct and not the name of any typedef to the struct. For example:

typedef struct Integer {
int value;

} Int;
%$extend Integer { ... } /* Correct name */
%$extend Int { ... } /* Incorrect name */

struct Float {
float value;
}i
typedef struct Float FloatValue;

$extend Float { ... '} /* Correct name */
%$extend FloatValue { ... } /* Incorrect name */

5.5 Structures and unions

55

SWIG-3.0 Documentation

There is one exception to this rule and that is when the struct is anonymously named such as:

typedef struct {
double value;
} Double;
$extend Double { ... '} /* Okay */

A little known feature of the $extend directive is that it can also be used to add synthesized attributes or to modify the behavior of existing data attributes.
example, suppose you wanted to make magnitude a read-only attribute of Vector instead of a method. To do this, you might write some code like this:

For

// Add a new attribute to Vector
%extend Vector {
const double magnitude;

}
// Now supply the implementation of the Vector magnitude get function
%{
const double Vector_ magnitude_get (Vector *v) {

return (const double) sgrt(v->x*v->x+v->y*v->y+v->z*v->z);

o0 —

Now, for all practical purposes, magnitude will appear like an attribute of the object.

A similar technique can also be used to work with data members that you want to process. For example, consider this interface:

typedef struct Person {
char name[50];

} Person;

Say you wanted to ensure name was always upper case, you can rewrite the interface as follows to ensure this occurs whenever a name is read or written to:

typedef struct Person {
%extend {
char name[50];

} Person;
% {
#include <string.h>

#include <ctype.h>

void make upper (char *name) {

char *c;
for (c = name; *c; ++c)
*c = (char) toupper ((int) *c);

/* Specific implementation of set/get functions forcing capitalization */

char *Person name get (Person *p) {
make upper (p->name) ;
return p->name;

void Person name set (Person *p, char *val) {
strncpy (p->name,val, 50) ;
make upper (p->name) ;

o0 —

Finally, it should be stressed that even though $extend can be used to add new data members, these new members can not require the allocation of additional

storage in the object (e.g., their values must be entirely synthesized from existing attributes of the structure or obtained elsewhere).

Compatibility note: The $extend directive is a new name for the $addmethods directive. Since $addmethods could be used to extend a structure with

more than just methods, a more suitable directive name has been chosen.
5.5.7 Nested structures

Occasionally, a C program will involve structures like this :

5.5 Structures and unions

56

SWIG-3.0 Documentation

typedef struct Object {
int objtype;
union {
int ivalue;
double dvalue;
char *strvalue;
void *ptrvalue;
} intRep;
} Object;

When SWIG encounters this, it performs a structure splitting operation that transforms the declaration into the equivalent of the following:

typedef union {
int ivalue;
double dvalue;
char *strvalue;
void *ptrvalue;

} Object intRep;

typedef struct Object {
int objType;
Object intRep intRep;
} Object;

SWIG will then create an Object intRep structure for use inside the interface file. Accessor functions will be created for both structures. In this case,
functions like this would be created :

Object intRep *Object intRep get (Object *o) {
return (Object intRep *) &o->intRep;

}

int Object intRep ivalue get (Object intRep *o) {
return o->ivalue;

}

int Object intRep ivalue set (Object intRep *o, int value) {
return (o->ivalue = value);

}

double Object intRep dvalue get (Object intRep *o) {
return o->dvalue;

}

etc

Although this process is a little hairy, it works like you would expect in the target scripting language--especially when proxy classes are used. For instance, in
Perl:

Perlb script for accessing nested member
$So = CreateObject () ; # Create an object somehow
So->{intRep}->{ivalue} = 7 # Change value of o.intRep.ivalue

If you have a lot of nested structure declarations, it is advisable to double-check them after running SWIG. Although, there is a good chance that they will work,
you may have to modify the interface file in certain cases.

Finally, note that nesting is handled differently in C++ mode, see Nested classes.
5.5.8 Other things to note about structure wrapping

SWIG doesn't care if the declaration of a structure in a . i file exactly matches that used in the underlying C code (except in the case of nested structures). For this
reason, there are no problems omitting problematic members or simply omitting the structure definition altogether. If you are happy passing pointers around, this
can be done without ever giving SWIG a structure definition.

Starting with SWIG1.3, a number of improvements have been made to SWIG's code generator. Specifically, even though structure access has been described in
terms of high-level accessor functions such as this,

double Vector x get (Vector *v) {
return v->x;

}

most of the generated code is actually inlined directly into wrapper functions. Therefore, no function Vector x get () actually exists in the generated wrapper
file. For example, when creating a Tcl module, the following function is generated instead:

5.5 Structures and unions

57

SWIG-3.0 Documentation

static int
_wrap Vector x get(ClientData clientData, Tcl Interp *interp,
int objc, Tcl Obj *CONST objv[]) {
struct Vector *argl ;
double result ;

if (SWIG GetArgs(interp, objc, objv,"p:Vector x get self ",&arg0,

SWIGTYPE p Vector) == TCL_ERROR)
return TCL_ ERROR;
result = (double) (argl->x);

Tcl SetObjResult (interp,Tcl NewDoubleObj ((double) result));
return TCL_OK;

The only exception to this rule are methods defined with $extend . In this case, the added code is contained in a separate function.

Finally, it is important to note that most language modules may choose to build a more advanced interface. Although you may never use the low-level interface
described here, most of SWIG's language modules use it in some way or another.

5.6 Code Insertion

Sometimes it is necessary to insert special code into the resulting wrapper file generated by SWIG. For example, you may want to include additional C code to
perform initialization or other operations. There are four common ways to insert code, but it's useful to know how the output of SWIG is structured first.

5.6.1 The output of SWIG

When SWIG creates its output file, it is broken up into five sections corresponding to runtime code, headers, wrapper functions, and module initialization code (in
that order).

® Begin section.
A placeholder for users to put code at the beginning of the C/C++ wrapper file. This is most often used to define preprocessor macros that are used in later
sections.
* Runtime code.
This code is internal to SWIG and is used to include type-checking and other support functions that are used by the rest of the module.
® Header section.
This is user-defined support code that has been included by the ${ ... %} directive. Usually this consists of header files and other helper functions.
o Wrapper code.
These are the wrappers generated automatically by SWIG.
® Module initialization.
The function generated by SWIG to initialize the module upon loading.

5.6.2 Code insertion blocks

Code is inserted into the appropriate code section by using one of the code insertion directives listed below. The order of the sections in the wrapper file is as
shown:

%begin %{
code in begin section

o°

Sruntime %{
code in runtime section

o°

%header %{
code in header section

o°

Swrapper %{
code in wrapper section

o°

$init %{
code in init section

o°

The bare ${ ... %} directive is a shortcut that is the same as $header %{ ... %}.

The $begin section is effectively empty as it just contains the SWIG banner by default. This section is provided as a way for users to insert code at the top of
the wrapper file before any other code is generated. Everything in a code insertion block is copied verbatim into the output file and is not parsed by SWIG. Most
SWIG input files have at least one such block to include header files and support C code. Additional code blocks may be placed anywhere in a SWIG file as
needed.

$module mymodule

%1

5.6 Code Insertion

58

SWIG-3.0 Documentation

#include "my header.h"
%}

Declare functions here

o0 o

{

void some extra function() {

o0 —

A common use for code blocks is to write "helper" functions. These are functions that are used specifically for the purpose of building an interface, but which are
generally not visible to the normal C program. For example :

S 1
/* Create a new vector */
static Vector *new Vector () {
return (Vector *) malloc (sizeof (Vector)):;
}

%}
// Now wrap it
Vector *new Vector();

5.6.3 Inlined code blocks

Since the process of writing helper functions is fairly common, there is a special inlined form of code block that is used as follows :

$inline %{
/* Create a new vector */
Vector *new Vector() {
return (Vector *) malloc(sizeof (Vector));

o0 —

The $inline directive inserts all of the code that follows verbatim into the header portion of an interface file. The code is then parsed by both the SWIG
preprocessor and parser. Thus, the above example creates a new command new_Vector using only one declaration. Since the code inside an $inline %{
%} block is given to both the C compiler and SWIG, it is illegal to include any SWIG directives insidea ${ ... %} block.

5.6.4 Initialization blocks

When code is included in the $init section, it is copied directly into the module initialization function. For example, if you needed to perform some extra
initialization on module loading, you could write this:

$init %{
init variables();
}

o°

5.7 An Interface Building Strategy
This section describes the general approach for building interfaces with SWIG. The specifics related to a particular scripting language are found in later chapters.

5.7.1 Preparing a C program for SWIG

SWIG doesn't require modifications to your C code, but if you feed it a collection of raw C header files or source code, the results might not be what you expect---
in fact, they might be awful. Here's a series of steps you can follow to make an interface for a C program :

e Identify the functions that you want to wrap. It's probably not necessary to access every single function of a C program--thus, a little forethought can
dramatically simplify the resulting scripting language interface. C header files are a particularly good source for finding things to wrap.

Create a new interface file to describe the scripting language interface to your program.

Copy the appropriate declarations into the interface file or use SWIG's $include directive to process an entire C source/header file.

Make sure everything in the interface file uses ANSI C/C++ syntax.

Make sure all necessary "t ypedef' declarations and type-information is available in the interface file. In particular, ensure that the type information is
specified in the correct order as required by a C/C++ compiler. Most importantly, define a type before it is used! A C compiler will tell you if the full type
information is not available if it is needed, whereas SWIG will usually not warn or error out as it is designed to work without full type information.
However, if type information is not specified correctly, the wrappers can be sub-optimal and even result in uncompilable C/C++ code.

e If your program has a main() function, you may need to rename it (read on).

e Run SWIG and compile.

e o o o

Although this may sound complicated, the process turns out to be fairly easy once you get the hang of it.

In the process of building an interface, SWIG may encounter syntax errors or other problems. The best way to deal with this is to simply copy the offending code

5.7 An Interface Building Strategy 59

SWIG-3.0 Documentation

into a separate interface file and edit it. However, the SWIG developers have worked very hard to improve the SWIG parser--you should report parsing errors to
the swig-devel mailing list or to the SWIG bug tracker.

5.7.2 The SWIG interface file

The preferred method of using SWIG is to generate a separate interface file. Suppose you have the following C header file :

/* File : header.h */

#include <stdio.h>
#include <math.h>

extern int foo(double);
extern double bar (int, int);
extern void dump (FILE *f);

A typical SWIG interface file for this header file would look like the following :

/* File : interface.i */
$module mymodule

S{

#include "header.h"

%}

extern int foo(double);
extern double bar (int, int);
extern void dump (FILE *f);

Of course, in this case, our header file is pretty simple so we could use a simpler approach and use an interface file like this:

/* File : interface.i */
$module mymodule

%{

#include "header.h"

%}

%$include "header.h"

The main advantage of this approach is minimal maintenance of an interface file for when the header file changes in the future. In more complex projects, an
interface file containing numerous $include and #include statements like this is one of the most common approaches to interface file design due to lower
maintenance overhead.

5.7.3 Why use separate interface files?

Although SWIG can parse many header files, it is more common to write a special . i file defining the interface to a package. There are several reasons why you
might want to do this:

e [t is rarely necessary to access every single function in a large package. Many C functions might have little or no use in a scripted environment. Therefore,
why wrap them?

Separate interface files provide an opportunity to provide more precise rules about how an interface is to be constructed.

Interface files can provide more structure and organization.

SWIG can't parse certain definitions that appear in header files. Having a separate file allows you to eliminate or work around these problems.

Interface files provide a more precise definition of what the interface is. Users wanting to extend the system can go to the interface file and immediately see
what is available without having to dig it out of header files.

e o o o

5.7.4 Getting the right header files

Sometimes, it is necessary to use certain header files in order for the code generated by SWIG to compile properly. Make sure you include certain header files by
using a % {, %} block like this:

$module graphics

S{

#include <GL/gl.h>
#include <GL/glu.h>

%}

// Put the rest of the declarations here

5.7.5 What to do with main()

If your program defines amain () function, you may need to get rid of it or rename it in order to use a scripting language. Most scripting languages define their

5.7 An Interface Building Strategy

60

http://www.swig.org/mail.html
http://www.swig.org/bugs.html

SWIG-3.0 Documentation

ownmain () procedure that is called instead. main () also makes no sense when working with dynamic loading. There are a few approaches to solving the
main () conflict:

e Getridof main () entirely.
e Renamemain () to something else. You can do this by compiling your C program with an option like -Dmain=oldmain.
e Use conditional compilation to only includemain () when not using a scripting language.

Getting rid of main () may cause potential initialization problems of a program. To handle this problem, you may consider writing a special function called
program init () that initializes your program upon startup. This function could then be called either from the scripting language as the first operation, or
when the SWIG generated module is loaded.

As a general note, many C programs only use themain () function to parse command line options and to set parameters. However, by using a scripting
language, you are probably trying to create a program that is more interactive. In many cases, the old main () program can be completely replaced by a Perl,
Python, or Tcl script.

Note: In some cases, you might be inclined to create a scripting language wrapper for main () . If you do this, the compilation will probably work and your
module might even load correctly. The only trouble is that when you call your main () wrapper, you will find that it actually invokes the main () of'the
scripting language interpreter itself! This behavior is a side effect of the symbol binding mechanism used in the dynamic linker. The bottom line: don't do this.

6 SWIG and C++

Comments on C++ Wrapping
Approach
Supported C++ features
Command line options and compilation
Proxy classes

o Construction of proxy classes

o Resource management in proxies

o Language specific details
e Simple C++ wrapping

o Constructors and destructors

Default constructors, copy constructors and implicit destructors
When constructor wrappers aren't created
Copy constructors
Member functions
Static members

o Member data
Default arguments
Protection
Enums and constants
Friends
References and pointers
Pass and return by value
Inheritance
A brief discussion of multiple inheritance, pointers. and type checking
Wrapping Overloaded Functions and Methods
Dispatch function generation
Ambiguity in Overloading
Ambiguity resolution and renaming
Comments on overloading
Wrapping overloaded operators
Class extension
Templates
Namespaces

o The nspace feature for namespaces
Renaming templated types in namespaces
Exception specifications
Exception handling with %catches
Pointers to Members
Smart pointers and operator->()
C+ reference counted objects - ref/unref feature
Using declarations and inheritance
Nested classes
A brief rant about const-correctness
Where to go for more information

e o o o o

o o0 o o o

e o o o o o o o o

o
o
o
o

e o o o

® O o o o o o o o o

This chapter describes SWIG's support for wrapping C++. As a prerequisite, you should first read the chapter SWIG Basics to see how SWIG wraps ANSI C.
Support for C++ builds upon ANSI C wrapping and that material will be useful in understanding this chapter.

6.1 Comments on C++ Wrapping

Because of its complexity and the fact that C++ can be difficult to integrate with itself let alone other languages, SWIG only provides support for a subset of C++
features. Fortunately, this is now a rather large subset.

In part, the problem with C++ wrapping is that there is no semantically obvious (or automatic) way to map many of its advanced features into other languages.

6.1 Comments on C++ Wrapping

SWIG-3.0 Documentation

As a simple example, consider the problem of wrapping C++ multiple inheritance to a target language with no such support. Similarly, the use of overloaded
operators and overloaded functions can be problematic when no such capability exists in a target language.

A more subtle issue with C++ has to do with the way that some C++ programmers think about programming libraries. In the world of SWIG, you are really trying
to create binary-level software components for use in other languages. In order for this to work, a "component" has to contain real executable instructions and
there has to be some kind of binary linking mechanism for accessing its functionality. In contrast, C++ has increasingly relied upon generic programming and
templates for much of its functionality. Although templates are a powerful feature, they are largely orthogonal to the whole notion of binary components and
libraries. For example, an STL vector does not define any kind of binary object for which SWIG can just create a wrapper. To further complicate matters, these
libraries often utilize a lot of behind the scenes magic in which the semantics of seemingly basic operations (e.g., pointer dereferencing, procedure call, etc.) can
be changed in dramatic and sometimes non-obvious ways. Although this "magic" may present few problems in a C++-only universe, it greatly complicates the
problem of crossing language boundaries and provides many opportunities to shoot yourself in the foot. You will just have to be careful.

6.2 Approach

To wrap C++, SWIG uses a layered approach to code generation. At the lowest level, SWIG generates a collection of procedural ANSI-C style wrappers. These
wrappers take care of basic type conversion, type checking, error handling, and other low-level details of the C++ binding. These wrappers are also sufficient to
bind C++ into any target language that supports built-in procedures. In some sense, you might view this layer of wrapping as providing a C library interface to
C++. On top of the low-level procedural (flattened) interface, SWIG generates proxy classes that provide a natural object-oriented (OO) interface to the
underlying code. The proxy classes are typically written in the target language itself. For instance, in Python, a real Python class is used to provide a wrapper
around the underlying C++ object.

It is important to emphasize that SWIG takes a deliberately conservative and non-intrusive approach to C++ wrapping. SWIG does not encapsulate C++ classes
inside a special C++ adaptor, it does not rely upon templates, nor does it add in additional C++ inheritance when generating wrappers. The last thing that most
C++ programs need is even more compiler magic. Therefore, SWIG tries to maintain a very strict and clean separation between the implementation of your C++
application and the resulting wrapper code. You might say that SWIG has been written to follow the principle of least surprise--it does not play sneaky tricks with
the C++ type system, it doesn't mess with your class hierarchies, and it doesn't introduce new semantics. Although this approach might not provide the most
seamless integration with C++, it is safe, simple, portable, and debuggable.

Some of this chapter focuses on the low-level procedural interface to C++ that is used as the foundation for all language modules. Keep in mind that the target
languages also provide the high-level OO interface via proxy classes. More detailed coverage can be found in the documentation for each target language.

6.3 Supported C++ features

SWIG currently supports most C++ features including the following:

Classes

Constructors and destructors

Virtual functions

Public inheritance (including multiple inheritance)
Static functions

Function and method overloading

Operator overloading for many standard operators
References

Templates (including specialization and member templates)
Pointers to members

Namespaces

Default parameters

Smart pointers

® O & & o o o 0o 0o 0o o o o

The following C++ features are not currently supported:
e Overloaded versions of certain operators (new, delete, etc.)
As a rule of thumb, SWIG should not be used on raw C++ source files, use header files only.

SWIG's C++ support is an ongoing project so some of these limitations may be lifted in future releases. However, we make no promises. Also, submitting a bug
report is a very good way to get problems fixed (wink).

6.4 Command line options and compilation

When wrapping C++ code, it is critical that SWIG be called with the *—c++' option. This changes the way a number of critical features such as memory
management are handled. It also enables the recognition of C++ keywords. Without the —c++ flag, SWIG will either issue a warning or a large number of syntax
errors if it encounters C++ code in an interface file.

When compiling and linking the resulting wrapper file, it is normal to use the C++ compiler. For example:

S swig -c++ -tcl example.i
$ ct+ -fPIC -c example wrap.cxx
$ ct+ example wrap.o $(OBJS) -o example.so

Unfortunately, the process varies slightly on each platform. Make sure you refer to the documentation on each target language for further details. The SWIG Wiki
also has further details.

Compatibility Note: Early versions of SWIG generated just a flattened low-level C style API to C++ classes by default. The ~noproxy commandline option is recognised
by many target languages and will generate just this interface as in earlier versions.

6.2 Approach 62

SWIG-3.0 Documentation

6.5 Proxy classes

In order to provide a natural mapping from C++ classes to the target language classes, SWIG's target languages mostly wrap C++ classes with special proxy
classes. These proxy classes are typically implemented in the target language itself. For example, if you're building a Python module, each C++ class is wrapped
by a Python proxy class. Or if you're building a Java module, each C++ class is wrapped by a Java proxy class.

6.5.1 Construction of proxy classes

Proxy classes are always constructed as an extra layer of wrapping that uses low-level accessor functions. To illustrate, suppose you had a C++ class like this:

class Foo {

public:
Foo () ;
~Foo () ;
int Dbar(int x);
int x;

}i

Using C++ as pseudocode, a proxy class looks something like this:

class FooProxy {
private:
Foo *self;
public:
FooProxy () {
self = new Foo();
}
~FooProxy () {
delete Foo(self);
}
int bar (int x) {
return Foo bar (self, x);
}
int x_get() {
return Foo x get (self);
}
void x set(int x) {
Foo x set(self,x);
}
}i

Of course, always keep in mind that the real proxy class is written in the target language. For example, in Python, the proxy might look roughly like this:

class Foo:
def init (self):
self.this = new Foo ()
def del (self):
delete Foo(self.this)
def bar(self,x):
return Foo bar (self.this,x)
def getattr (self,name):

if name == 'x
return Foo x get(self.this)

def setattr (self,name,value):
if name == 'x':
Foo _x set(self.this,value)

Again, it's important to emphasize that the low-level accessor functions are always used by the proxy classes. Whenever possible, proxies try to take advantage of
language features that are similar to C++. This might include operator overloading, exception handling, and other features.

6.5.2 Resource management in proxies

A major issue with proxies concerns the memory management of wrapped objects. Consider the following C++ code:

class Foo {
public:
Foo () ;
~Foo () ;
int bar (int x);
int x;

6.5 Proxy classes

SWIG-3.0 Documentation

}i
class Spam {
public:

Foo *value;

}i

Consider some script code that uses these classes:

f = Fool() # Creates a new Foo

s = Spam() # Creates a new Spam

s.value = £ # Stores a reference to f inside s
g = s.value # Returns stored reference

g =4 # Reassign g to some other value
del £ # Destroy f

Now, ponder the resulting memory management issues. When objects are created in the script, the objects are wrapped by newly created proxy classes. That is,
there is both a new proxy class instance and a new instance of the underlying C++ class. In this example, both £ and s are created in this way. However, the
statement s . value is rather curious---when executed, a pointer to £ is stored inside another object. This means that the scripting proxy class AND another C++
class share a reference to the same object. To make matters even more interesting, consider the statement g = s.value. When executed, this creates a new
proxy class g that provides a wrapper around the C++ object stored in s . value . In general, there is no way to know where this object came from---it could have
been created by the script, but it could also have been generated internally. In this particular example, the assignment of g results in a second proxy class for £. In
other words, a reference to £ is now shared by two proxy classes and a C++ class.

Finally, consider what happens when objects are destroyed. In the statement, g=4, the variable g is reassigned. In many languages, this makes the old value of g
available for garbage collection. Therefore, this causes one of the proxy classes to be destroyed. Later on, the statement del £ destroys the other proxy class. Of
course, there is still a reference to the original object stored inside another C++ object. What happens to it? Is the object still valid?

To deal with memory management problems, proxy classes provide an API for controlling ownership. In C++ pseudocode, ownership control might look roughly
like this:

class FooProxy {
public:
Foo *self;
int thisown;

FooProxy () {
self = new Foo();
thisown = 1; // Newly created object
}
~FooProxy () {
if (thisown) delete Foo(self);
}

// Ownership control API
void disown () {
thisown = 0;
}
void acquire() {
thisown = 1;

}i

class FooPtrProxy: public FooProxy {
public:
FooPtrProxy (Foo *s) {
self = s;
thisown = 0;
}i
class SpamProxy {

FooProxy *value get () {
return FooPtrProxy(Spam value get(self));

}

void value set (FooProxy *v) {
Spam_value set (self,v->self);
v->disown () ;

}i

Looking at this code, there are a few central features:

6.5 Proxy classes

64

SWIG-3.0 Documentation

Each proxy class keeps an extra flag to indicate ownership. C++ objects are only destroyed if the ownership flag is set.

When new objects are created in the target language, the ownership flag is set.

When a reference to an internal C++ object is returned, it is wrapped by a proxy class, but the proxy class does not have ownership.
In certain cases, ownership is adjusted. For instance, when a value is assigned to the member of a class, ownership is lost.

Manual ownership control is provided by special disown () and acquire () methods.

e o o o o

Given the tricky nature of C++ memory management, it is impossible for proxy classes to automatically handle every possible memory management problem.
However, proxies do provide a mechanism for manual control that can be used (if necessary) to address some of the more tricky memory management problems.

6.5.3 Language specific details

Language specific details on proxy classes are contained in the chapters describing each target language. This chapter has merely introduced the topic in a very
general way.

6.6 Simple C++ wrapping

The following code shows a SWIG interface file for a simple C++ class.

gmodule list
S{
#include "list.h"

%}
// Very simple C++ example for linked list

class List {
public:
List ()
~List () ;
int search(char *value);
void insert (char *);
void remove (char *);
char *get (int n);
int length;
static void print (List *1);
}i

To generate wrappers for this class, SWIG first reduces the class to a collection of low-level C-style accessor functions which are then used by the proxy classes.

6.6.1 Constructors and destructors

C++ constructors and destructors are translated into accessor functions such as the following :

List * new List(void) {
return new List;

}

void delete List(List *1) {
delete 1;

}

6.6.2 Default constructors, copy constructors and implicit destructors

Following the C++ rules for implicit constructor and destructors, SWIG will automatically assume there is one even when they are not explicitly declared in the
class interface.

In general then:

e Ifa C+t class does not declare any explicit constructor, SWIG will automatically generate a wrapper for one.
e Ifa C++ class does not declare an explicit copy constructor, SWIG will automatically generate a wrapper for one if the $copyctor is used.
e Ifa C++ class does not declare an explicit destructor, SWIG will automatically generate a wrapper for one.

And as in C++, a few rules that alters the previous behavior:

® A default constructor is not created if a class already defines a constructor with arguments.

e Default constructors are not generated for classes with pure virtual methods or for classes that inherit from an abstract class, but don't provide definitions for
all of the pure methods.

® A default constructor is not created unless all base classes support a default constructor.

e Default constructors and implicit destructors are not created if a class defines them in a private or protected section.

e Default constructors and implicit destructors are not created if any base class defines a non-public default constructor or destructor.

SWIG should never generate a default constructor, copy constructor or default destructor wrapper for a class in which it is illegal to do so. In some cases,
however, it could be necessary (if the complete class declaration is not visible from SWIG, and one of the above rules is violated) or desired (to reduce the size of
the final interface) by manually disabling the implicit constructor/destructor generation.

To manually disable these, the $nodefaultctor and $nodefaultdtor feature flag directives can be used. Note that these directives only affects the

6.6 Simple C++ wrapping

SWIG-3.0 Documentation

implicit generation, and they have no effect if the default/copy constructors or destructor are explicitly declared in the class interface.

For example:

$nodefaultctor Foo; // Disable the default constructor for class Foo.
class Foo { // No default constructor is generated, unless one is declared

}i
class Bar { // A default constructor is generated, if possible

}i

The directive $nodefaultctor can also be applied "globally", as in:

$nodefaultctor; // Disable creation of default constructors
class Foo { // No default constructor is generated, unless one is declared

}i
class Bar {
public:
Bar () ; // The default constructor is generated, since one is declared
}i
$clearnodefaultctor; // Enable the creation of default constructors again

The corresponding $nodefaultdtor directive can be used to disable the generation of the default or implicit destructor, if needed. Be aware, however, that
this could lead to memory leaks in the target language. Hence, it is recommended to use this directive only in well known cases. For example:

$nodefaultdtor Foo; // Disable the implicit/default destructor for class Foo.
class Foo { // No destructor is generated, unless one is declared

}i

Compatibility Note: The generation of default constructors/implicit destructors was made the default behavior in SWIG 1.3.7. This may break certain older
modules, but the old behavior can be easily restored using $nodefault or the -nodefault command line option. Furthermore, in order for SWIG to properly
generate (or not generate) default constructors, it must be able to gather information from both the private and protected sections (specifically, it needs to
know if a private or protected constructor/destructor is defined). In older versions of SWIG, it was fairly common to simply remove or comment out the private
and protected sections of a class due to parser limitations. However, this removal may now cause SWIG to erroneously generate constructors for classes that
define a constructor in those sections. Consider restoring those sections in the interface or using $nodefault to fix the problem.

Note: The $nodefault directive/~-nodefault options described above, which disable both the default constructor and the implicit destructors, could lead to
memory leaks, and so it is strongly recommended to not use them.

6.6.3 When constructor wrappers aren't created

If a class defines a constructor, SWIG normally tries to generate a wrapper for it. However, SWIG will not generate a constructor wrapper if it thinks that it will
result in illegal wrapper code. There are really two cases where this might show up.

First, SWIG won't generate wrappers for protected or private constructors. For example:

class Foo {
protected:

Foo () // Not wrapped.
public:

}i

Next, SWIG won't generate wrappers for a class if it appears to be abstract--that is, it has undefined pure virtual methods. Here are some examples:

class Bar {

public:
Bar(); // Not wrapped. Bar is abstract.
virtual void spam(void) = 0;

}i

class Grok : public Bar {
public:

Grok () ; // Not wrapped. No implementation of abstract spam().
}i

Some users are surprised (or confused) to find missing constructor wrappers in their interfaces. In almost all cases, this is caused when classes are determined to
be abstract. To see if this is the case, run SWIG with all of its warnings turned on:

6.6 Simple C++ wrapping

66

SWIG-3.0 Documentation

o

% swig -Wall -python module.i

In this mode, SWIG will issue a warning for all abstract classes. It is possible to force a class to be non-abstract using this:

$feature ("notabstract") Foo;
class Foo : public Bar {
public:

Foo () // Generated no matter what---not abstract.

}i

More information about $feature can be found in the Customization features chapter.

6.6.4 Copy constructors

If a class defines more than one constructor, its behavior depends on the capabilities of the target language. If overloading is supported, the copy constructor is
accessible using the normal constructor function. For example, if you have this:

class List {
public:
List();
List (const List &); // Copy constructor

}i

then the copy constructor can be used as follows:

x = List () # Create a list
y = List (x) # Copy list x

If the target language does not support overloading, then the copy constructor is available through a special function like this:

List *copy List(List *f) {
return new List (*f);

}

Note: For a class X, SWIG only treats a constructor as a copy constructor if it can be applied to an object of type X or X *. If more than one copy constructor is
defined, only the first definition that appears is used as the copy constructor--other definitions will result in a name-clash. Constructors such as X (const X &),
X (X &),and X (X *) are handled as copy constructors in SWIG.

Note: SWIG does not generate a copy constructor wrapper unless one is explicitly declared in the class. This differs from the treatment of default constructors and
destructors. However, copy constructor wrappers can be generated if using the copyctor feature flag. For example:

%copyctor List;

class List {
public:

List();
}i

Will generate a copy constructor wrapper for List.

Compatibility note: Special support for copy constructors was not added until SWIG-1.3.12. In previous versions, copy constructors could be wrapped, but they
had to be renamed. For example:

class Foo {
public:
Foo () s
%$name (CopyFoo) Foo(const Foo &);

}i

For backwards compatibility, SWIG does not perform any special copy-constructor handling if the constructor has been manually renamed. For instance, in the
above example, the name of the constructor is set to new CopyFoo () . This is the same as in older versions.

6.6.5 Member functions

6.6 Simple C++ wrapping 67

SWIG-3.0 Documentation

All member functions are roughly translated into accessor functions like this :

int List search(List *obj, char *value) {
return obj->search(value);
}

This translation is the same even if the member function has been declared as virtual.

It should be noted that SWIG does not actually create a C accessor function in the code it generates. Instead, member access such as obj->search (value) is
directly inlined into the generated wrapper functions. However, the name and calling convention of the low-level procedural wrappers match the accessor
function prototype described above.

6.6.6 Static members

Static member functions are called directly without making any special transformations. For example, the static member function print (List *1) directly
invokes List: :print (List *1) inthe generated wrapper code.

6.6.7 Member data

Member data is handled in exactly the same manner as for C structures. A pair of accessor functions are effectively created. For example :

int List length get (List *obj) {
return obj->length;

}

int List length set(List *obj, int value) {
obj->length = value;
return value;

A read-only member can be created using the $immutable and $mutable feature flag directive. For example, we probably wouldn't want the user to change
the length of a list so we could do the following to make the value available, but read-only.

class List {
public:

Simmutable;
int length;

smutable;

}i

Alternatively, you can specify an immutable member in advance like this:

$immutable List::length;
class List {
int length; // Immutable by above directive

}i

Similarly, all data attributes declared as const are wrapped as read-only members.

By default, SWIG uses the const reference typemaps for members that are primitive types. There are some subtle issues when wrapping data members that are
not primitive types, such as classes. For instance, if you had another class like this,

class Foo {
public:
List items;

then the low-level accessor to the i tems member actually uses pointers. For example:

List *Foo items get (Foo *self) {
return &self->items;

}

void Foo items set (Foo *self, List *value) {
self->items = *value;

6.6 Simple C++ wrapping

68

SWIG-3.0 Documentation

More information about this can be found in the SWIG Basics chapter, Structure data members section.

The wrapper code to generate the accessors for classes comes from the pointer typemaps. This can be somewhat unnatural for some types. For example, a user
would expect the STL std::string class member variables to be wrapped as a string in the target language, rather than a pointer to this class. The const reference
typemaps offer this type of marshalling, so there is a feature to tell SWIG to use the const reference typemaps rather than the pointer typemaps. It is the naturalvar
feature and can be used to effectively change the way accessors are generated to the following:

const List &Foo items get (Foo *self) {
return self->items;

}

void Foo items set (Foo *self, const List &value) {
self->items = value;

}

The $naturalvar directive is a macro for, and hence equivalent to, $feature ("naturalvar"). It can be used as follows:

// All List variables will use const Listé& typemaps
$naturalvar List;

// Only Foo::myList will use const Listé& typemaps
$naturalvar Foo::myList;
struct Foo {
List myList;
}i

// All non-primitive types will use const reference typemaps
$naturalvar;

The observant reader will notice that $naturalvar works like any other feature flag directive but with some extra flexibility. The first of the example usages
above shows $naturalvar attaching to the myList 's variable type, that is the List class. The second usage shows $naturalvar attaching to the variable
name. Hence the naturalvar feature can be used on either the variable's name or type. Note that using the naturalvar feature on a variable's name overrides any
naturalvar feature attached to the variable's type.

It is generally a good idea to use this feature globally as the reference typemaps have extra NULL checking compared to the pointer typemaps. A pointer can be
NULL, whereas a reference cannot, so the extra checking ensures that the target language user does not pass in a value that translates to a NULL pointer and
thereby preventing any potential NULL pointer dereferences. The $naturalvar feature will apply to global variables in addition to member variables in some
language modules, eg C# and Java.

The naturalvar behavior can also be turned on as a global setting via the —-naturalvar commandline option or the module mode option,
$module (naturalvar=1). However, any use of $feature ("naturalvar") will override the global setting.

Compatibility note: The $naturalvar feature was introduced in SWIG-1.3.28, prior to which it was necessary to manually apply the const reference
typemaps, eg $apply const std::string & { std::string * 1}, but this example would also apply the typemaps to methods taking a
std: :string pointer.

Compatibility note: Read-only access used to be controlled by a pair of directives $readonly and $readwrite. Although these directives still work, they
generate a warning message. Simply change the directives to $immutable; and $mutable; to silence the warning. Don't forget the extra semicolon!

Compatibility note: Prior to SWIG-1.3.12, all members of unknown type were wrapped into accessor functions using pointers. For example, if you had a
structure like this

struct Foo {
size t len;

}i

and nothing was known about size t, then accessors would be written to work with size t *. Starting in SWIG-1.3.12, this behavior has been modified.
Specifically, pointers will only be used if SWIG knows that a datatype corresponds to a structure or class. Therefore, the above code would be wrapped into
accessors involving size t. This change is subtle, but it smooths over a few problems related to structure wrapping and some of SWIG's customization features.

6.7 Default arguments

SWIG will wrap all types of functions that have default arguments. For example member functions:

class Foo {
public:

void bar(int x, int y = 3, int z = 4);
}i

SWIG handles default arguments by generating an extra overloaded method for each defaulted argument. SWIG is effectively handling methods with default

6.7 Default arguments 69

SWIG-3.0 Documentation

arguments as if it was wrapping the equivalent overloaded methods. Thus for the example above, it is as if we had instead given the following to SWIG:

class Foo {

public:
void bar(int x, int y, int z);
void bar (int x, int y);
void bar (int x);

}i

The wrappers produced are exactly the same as if the above code was instead fed into SWIG. Details of this are covered later in the Wrapping Overloaded
Functions and Methods section. This approach allows SWIG to wrap all possible default arguments, but can be verbose. For example if a method has ten default

arguments, then eleven wrapper methods are generated.

Please see the Features and default arguments section for more information on using $feature with functions with default arguments. The Ambiguity
resolution and renaming section also deals with using $rename and $ignore on methods with default arguments. If you are writing your own typemaps for
types used in methods with default arguments, you may also need to write a t ypecheck typemap. See the Typemaps and overloading section for details or
otherwise use the compactdefaultargs feature flag as mentioned below.

Compatibility note: Versions of SWIG prior to SWIG-1.3.23 wrapped default arguments slightly differently. Instead a single wrapper method was generated and
the default values were copied into the C++ wrappers so that the method being wrapped was then called with all the arguments specified. If the size of the
wrappers are a concern then this approach to wrapping methods with default arguments can be re-activated by using the compactdefaultargs feature flag.

$feature ("compactdefaultargs") Foo::bar;
class Foo {
public:

void bar(int x, int y = 3, int z = 4);
}i

This is great for reducing the size of the wrappers, but the caveat is it does not work for the statically typed languages, such as C# and Java, which don't have
optional arguments in the language, Another restriction of this feature is that it cannot handle default arguments that are not public. The following example

illustrates this:

class Foo {

private:
static const int spam;
public:
void bar (int x, int y = spam); // Won't work with %$feature ("compactdefaultargs") -

// private default value
}i

This produces uncompilable wrapper code because default values in C++ are evaluated in the same scope as the member function whereas SWIG evaluates them
in the scope of a wrapper function (meaning that the values have to be public).

The compactdefaultargs feature is automatically turned on when wrapping C code with default arguments. Some target languages will also automatically
turn on this feature if the keyword arguments feature (kwargs) is specified for either C or C++ functions, and the target language supports kwargs, the
compactdefaultargs feature is also automatically turned on. Keyword arguments are a language feature of some scripting languages, for example Ruby and
Python. SWIG is unable to support kwargs when wrapping overloaded methods, so the default approach cannot be used.

6.8 Protection

SWIG wraps class members that are public following the C++ conventions, i.e., by explicit public declaration or by the use of the us ing directive. In general,
anything specified in a private or protected section will be ignored, although the internal code generator sometimes looks at the contents of the private and
protected sections so that it can properly generate code for default constructors and destructors. Directors could also modify the way non-public virtual protected

members are treated.

By default, members of a class definition are assumed to be private until you explicitly give a ‘public:'declaration (This is the same convention used by C++).

6.9 Enums and constants

Enumerations and constants are handled differently by the different language modules and are described in detail in the appropriate language chapter. However,
many languages map enums and constants in a class definition into constants with the classname as a prefix. For example :

class Swig {
public:
enum {ALE, LAGER, PORTER, STOUT};

}i

Generates the following set of constants in the target scripting language :

6.8 Protection 70

SWIG-3.0 Documentation

Swig ALE = Swig::ALE

Swig LAGER = Swig::LAGER
Swig PORTER = Swig::PORTER
Swig STOUT = Swig::STOUT

Members declared as const are wrapped as read-only members and do not create constants.
6.10 Friends

Friend declarations are recognised by SWIG. For example, if you have this code:

class Foo {
public:

friend void blah(Foo *f);

}i

then the friend declaration does result in a wrapper code equivalent to one generated for the following declaration

class Foo {
public:

}i

void blah (Foo *f);

A friend declaration, as in C++, is understood to be in the same scope where the class is declared, hence, you can have

%$ignore bar::blah(Foo *f);
namespace bar {

class Foo {
public:

friend void blah(Foo *f);

and a wrapper for the method 'blah’ will not be generated.
6.11 References and pointers

C++ references are supported, but SWIG transforms them back into pointers. For example, a declaration like this :

class Foo {
public:
double bar (double &a);

has a low-level accessor

double Foo bar (Foo *obj, double *a) {
obj->bar (*a);
}

As a special case, most language modules pass const references to primitive datatypes (int, short, float, etc.) by value instead of pointers. For example, if

you have a function like this,

void foo(const int &x);

6.10 Friends

71

SWIG-3.0 Documentation

it is called from a script as follows:

foo (3) # Notice pass by value

Functions that return a reference are remapped to return a pointer instead. For example:

class Bar {
public:

Foo &spam() ;
}i

Generates an accessor like this:

Foo *Bar_ spam(Bar *obj) {
Foo &result = obj->spam();
return &result;

However, functions that return const references to primitive datatypes (int, short, etc.) normally return the result as a value rather than a pointer. For
example, a function like this,

const int é&bar();

will return integers such as 37 or 42 in the target scripting language rather than a pointer to an integer.

Don't return references to objects allocated as local variables on the stack. SWIG doesn't make a copy of the objects so this will probably cause your program to
crash.

Note: The special treatment for references to primitive datatypes is necessary to provide more seamless integration with more advanced C++ wrapping
applications---especially related to templates and the STL. This was first added in SWIG-1.3.12.

6.12 Pass and return by value

Occasionally, a C++ program will pass and return class objects by value. For example, a function like this might appear:

Vector cross product (Vector a, Vector b);

If no information is supplied about Vector, SWIG creates a wrapper function similar to the following:

Vector *wrap_ cross product (Vector *a, Vector *b) {
Vector x = *a;
Vector y = *b;
Vector r = cross_product(x,y);
return new Vector(r);

In order for the wrapper code to compile, Vector must define a copy constructor and a default constructor.

If Vector is defined as a class in the interface, but it does not support a default constructor, SWIG changes the wrapper code by encapsulating the arguments
inside a special C++ template wrapper class, through a process called the "Fulton Transform". This produces a wrapper that looks like this:

Vector cross product (Vector *a, Vector *b) {
SwigValueWrapper<Vector> x = *a;
SwigValueWrapper<Vector> y = *b;
SwigValueWrapper<Vector> r = cross_product(x,y);
return new Vector(r);

This transformation is a little sneaky, but it provides support for pass-by-value even when a class does not provide a default constructor and it makes it possible to
properly support a number of SWIG's customization options. The definition of SwigValueWrapper can be found by reading the SWIG wrapper code. This
class is really nothing more than a thin wrapper around a pointer.

Although SWIG usually detects the classes to which the Fulton Transform should be applied, in some situations it's necessary to override it. That's done with
%feature ("valuewrapper") to ensure it is used and $feature ("novaluewrapper") to ensure it is not used:

$feature ("novaluewrapper") A;

6.12 Pass and return by value 72

SWIG-3.0 Documentation

class A;

$feature ("valuewrapper") B;
struct B {

B();

//
}i

It is well worth considering turning this feature on for classes that do have a default constructor. It will remove a redundant constructor call at the point of the
variable declaration in the wrapper, so will generate notably better performance for large objects or for classes with expensive construction. Alternatively consider
returning a reference or a pointer.

Note: this transformation has no effect on typemaps or any other part of SWIG---it should be transparent except that you may see this code when reading the
SWIG output file.

Note: This template transformation is new in SWIG-1.3.11 and may be refined in future SWIG releases. In practice, it is only absolutely necessary to do this for
classes that don't define a default constructor.

Note: The use of this template only occurs when objects are passed or returned by value. It is not used for C++ pointers or references.

6.13 Inheritance

SWIG supports C++ inheritance of classes and allows both single and multiple inheritance, as limited or allowed by the target language. The SWIG type-checker
knows about the relationship between base and derived classes and allows pointers to any object of a derived class to be used in functions of a base class. The
type-checker properly casts pointer values and is safe to use with multiple inheritance.

SWIG treats private or protected inheritance as close to the C++ spirit, and target language capabilities, as possible. In most cases, this means that SWIG will
parse the non-public inheritance declarations, but that will have no effect in the generated code, besides the implicit policies derived for constructors and
destructors.

The following example shows how SWIG handles inheritance. For clarity, the full C++ code has been omitted.

// shapes.i

$module shapes

S 1

#include "shapes.h"

%}

class Shape {
public:
double x,y;
virtual double area() = 0;
virtual double perimeter() = 0;
void set location(double x, double y);
}i
class Circle : public Shape {
public:
Circle (double radius);
~Circle();
double area();
double perimeter();
}i
class Square : public Shape {
public:
Square (double size);
~Square () ;
double area();
double perimeter();

When wrapped into Python, we can perform the following operations (shown using the low level Python accessors):

$ python

>>> import shapes

>>> circle = shapes.new Circle(7)

>>> square = shapes.new Square (10)

>>> print shapes.Circle area(circle)
153.93804004599999757

>>> print shapes.Shape area(circle)
153.93804004599999757

>>> print shapes.Shape area(square)
100.00000000000000000

>>> shapes.Shape set location (square,2,-3)
>>> print shapes.Shape perimeter (square)
40.00000000000000000

>>>

6.13 Inheritance

73

SWIG-3.0 Documentation

In this example, Circle and Square objects have been created. Member functions can be invoked on each object by making callsto Circle area,
Square area, and so on. However, the same results can be accomplished by simply using the Shape area function on either object.

One important point concerning inheritance is that the low-level accessor functions are only generated for classes in which they are actually declared. For
instance, in the above example, the method set location () is only accessible as Shape set location () andnotas Circle set location() or
Square set location() .Ofcourse, the Shape set location () function will accept any kind of object derived from Shape. Similarly, accessor
functions for the attributes x and y are generated as Shape x get (), Shape x set (), Shape y get(),and Shape y set (). Functions such as
Circle_x get () are not available--instead you should use Shape x_get ().

Note that there is a one to one correlation between the low-level accessor functions and the proxy methods and therefore there is also a one to one correlation
between the C++ class methods and the generated proxy class methods.

Note: For the best results, SWIG requires all base classes to be defined in an interface. Otherwise, you may get a warning message like this:

example.i:18: Warning 401: Nothing known about base class 'Foo'. Ignored.

If any base class is undefined, SWIG still generates correct type relationships. For instance, a function accepting a Foo * will accept any object derived from
Foo regardless of whether or not SWIG actually wrapped the Foo class. If you really don't want to generate wrappers for the base class, but you want to silence
the warning, you might consider using the $import directive to include the file that defines Foo. $import simply gathers type information, but doesn't
generate wrappers. Alternatively, you could just define Foo as an empty class in the SWIG interface or use warning suppression .

Note: t ypede f-names can be used as base classes. For example:

class Foo {
}i

typedef Foo FooOb7j;
class Bar : public FooObj { // Ok. Base class is Foo

}i

Similarly, typedef allows unnamed structures to be used as base classes. For example:

typedef struct {
} Foo;
class Bar : public Foo { // Ok.

}i

Compatibility Note: Starting in version 1.3.7, SWIG only generates low-level accessor wrappers for the declarations that are actually defined in each class. This
differs from SWIGI.1 which used to inherit all of the declarations defined in base classes and regenerate specialized accessor functions such as
Circle x get(),Square x get(),Circle set location(),and Square set location (). This behavior resulted in huge amounts of
replicated code for large class hierarchies and made it awkward to build applications spread across multiple modules (since accessor functions are duplicated in
every single module). It is also unnecessary to have such wrappers when advanced features like proxy classes are used. Note: Further optimizations are enabled
when using the ~fvirtual option, which avoids the regenerating of wrapper functions for virtual members that are already defined in a base class.

6.14 A brief discussion of multiple inheritance, pointers, and type checking

When a target scripting language refers to a C++ object, it normally uses a tagged pointer object that contains both the value of the pointer and a type string. For
example, in Tcl, a C++ pointer might be encoded as a string like this:

~808fea88 p Circle

A somewhat common question is whether or not the type-tag could be safely removed from the pointer. For instance, to get better performance, could you strip all
type tags and just use simple integers instead?

In general, the answer to this question is no. In the wrappers, all pointers are converted into a common data representation in the target language. Typically this is
the equivalent of casting a pointer to void *. This means that any C++ type information associated with the pointer is lost in the conversion.

The problem with losing type information is that it is needed to properly support many advanced C++ features--especially multiple inheritance. For example,
suppose you had code like this:

class A {
public:
int x;

}i

6.14 A brief discussion of multiple inheritance, pointers, and type checking

SWIG-3.0 Documentation

class B {
public:

int y;
}i

class C : public A, public B {
}i

int A function(A *a) {
return a->x;

}

int B function(B *b) {
return b->y;
}

Now, consider the following code that uses void *.

C *c = new C();
void *p = (void *) c;

int x = A function((A *) p);
int y = B function((B *) p);

In this code, both A function () and B function () may legally accept an object of type C * (via inheritance). However, one of the functions will always
return the wrong result when used as shown. The reason for this is that even though p points to an object of type C, the casting operation doesn't work like you

would expect. Internally, this has to do with the data representation of C. With multiple inheritance, the data from each base class is stacked together. For
example:

Because of this stacking, a pointer of type C * may change value when it is converted toa 2 * or B *. However, this adjustment does ot occur if you are

converting from a void *.

The use of type tags marks all pointers with the real type of the underlying object. This extra information is then used by SWIG generated wrappers to correctly

cast pointer values under inheritance (avoiding the above problem).

Some of the language modules are able to solve the problem by storing multiple instances of the pointer, for example, 2 *, in the A proxy class as well as C * in
the C proxy class. The correct cast can then be made by choosing the correct void * pointer to use and is guaranteed to work as the cast to a void pointer and

back to the same type does not lose any type information:

C *c = new C();

void *p = (void *) c;
void *pA = (void *) c;
void *pB = (void *) c;

int x = A function((A *) pA);
int y = B _function((B *) pB);

In practice, the pointer is held as an integral number in the target language proxy class.

6.15 Wrapping Overloaded Functions and Methods

In many language modules, SWIG provides partial support for overloaded functions, methods, and constructors. For example, if you supply SWIG with
overloaded functions like this:

void foo(int x) {

printf("x is %d\n", x);
}
void foo(char *x)

{
printf("x is '%s'\n", x);

The function is used in a completely natural way. For example:

6.15 Wrapping Overloaded Functions and Methods

75

SWIG-3.0 Documentation

>>> foo (3)

x is 3

>>> foo("hello"™)
x is 'hello'

>>>

Overloading works in a similar manner for methods and constructors. For example if you have this code,

class Foo {
public:
Foo ()
Foo (const Foo &); // Copy constructor
void bar (int x);
void bar (char *s, int y);
}i

it might be used like this

>>> f = Foo () # Create a Foo
>>> f.bar (3)

>>> g = Foo (f) # Copy Foo
>>> f.bar ("hello",2)

6.15.1 Dispatch function generation

The implementation of overloaded functions and methods is somewhat complicated due to the dynamic nature of scripting languages. Unlike C++, which binds
overloaded methods at compile time, SWIG must determine the proper function as a runtime check for scripting language targets. This check is further
complicated by the typeless nature of certain scripting languages. For instance, in Tcl, all types are simply strings. Therefore, if you have two overloaded
functions like this,

void foo(char *x);
void foo(int x);

the order in which the arguments are checked plays a rather critical role.

For statically typed languages, SWIG uses the language's method overloading mechanism. To implement overloading for the scripting languages, SWIG
generates a dispatch function that checks the number of passed arguments and their types. To create this function, SWIG first examines all of the overloaded
methods and ranks them according to the following rules:

1. Number of required arguments. Methods are sorted by increasing number of required arguments.

2. Argument type precedence. All C++ datatypes are assigned a numeric type precedence value (which is determined by the language module).

Type Precedence
TYPE * 0 (High)
void * 20

Integers 40

Floating point 60

char 80

Strings 100 (Low)

Using these precedence values, overloaded methods with the same number of required arguments are sorted in increased order of precedence values.

This may sound very confusing, but an example will help. Consider the following collection of overloaded methods:

void foo (double) ;

void foo (int);

void foo (Bar *);

void foo();

void foo(int x, int y, int z, int w);
void foo(int x, int y, int z = 3);
void foo(double x, double vy);

void foo (double x, Bar *z);

The first rule simply ranks the functions by required argument count. This would produce the following list:

6.15 Wrapping Overloaded Functions and Methods

76

SWIG-3.0 Documentation

0] foo ()
1] foo (double) ;

2] foo (int) ;

[(

[(

[(

[3] foo (Bar *);

[4] foo(int x, int y, int z = 3);
[5] foo (double x, double y)

[6] foo (double x, Bar *z)

[7] foo(int x, int y, int z, int w);

The second rule, simply refines the ranking by looking at argument type precedence values.

rank

[0] foo ()

[1] foo (Bar *);

[2] foo (int) ;

[3] foo (double) ;

[4] foo(int x, int y, int z = 3);
[5] foo (double x, Bar *z)

[6] foo (double x, double y)

[7] foo(int x, int y, int z, int w);

Finally, to generate the dispatch function, the arguments passed to an overloaded method are simply checked in the same order as they appear in this ranking.

If you're still confused, don't worry about it---SWIG is probably doing the right thing.
6.15.2 Ambiguity in Overloading

Regrettably, SWIG is not able to support every possible use of valid C++ overloading. Consider the following example:

void foo(int x);
void foo(long x);

In C++, this is perfectly legal. However, in a scripting language, there is generally only one kind of integer object. Therefore, which one of these functions do you
pick? Clearly, there is no way to truly make a distinction just by looking at the value of the integer itself (int and 1ong may even be the same precision).
Therefore, when SWIG encounters this situation, it may generate a warning message like this for scripting languages:

example.i:4: Warning 509: Overloaded method foo(long) effectively ignored,
example.i:3: Warning 509: as it is shadowed by foo (int).

or for statically typed languages like Java:

example.i:4: Warning 516: Overloaded method foo (long) ignored,
example.i:3: Warning 516: using foo(int) instead.
at example.i:3 used.

This means that the second overloaded function will be inaccessible from a scripting interface or the method won't be wrapped at all. This is done as SWIG does
not know how to disambiguate it from an earlier method.

Ambiguity problems are known to arise in the following situations:

Integer conversions. Datatypes such as int, long, and short cannot be disambiguated in some languages. Shown above.
Floating point conversion. f1oat and double can not be disambiguated in some languages.

Pointers and references. For example, Foo * and Foo & .

Pointers and arrays. For example, Foo * and Foo [4] .

Pointers and instances. For example, Foo and Foo * . Note: SWIG converts all instances to pointers.

Qualifiers. For example, const Foo * and Foo *.

Default vs. non default arguments. For example, foo (int a, int b) and foo (int a, int b = 3).

e o o o o o o

When an ambiguity arises, methods are checked in the same order as they appear in the interface file. Therefore, earlier methods will shadow methods that appear
later.

When wrapping an overloaded function, there is a chance that you will get a warning message like this:

example.i:3: Warning 467: Overloaded foo (int) not supported (incomplete type checking rule -
no precedence level in typecheck typemap for 'int').

This error means that the target language module supports overloading, but for some reason there is no type-checking rule that can be used to generate a working
dispatch function. The resulting behavior is then undefined. You should report this as a bug to the SWIG bug tracking database if this is due to one of the
typemaps supplied with SWIG.

6.15 Wrapping Overloaded Functions and Methods

7

http://www.swig.org/bugs.html

SWIG-3.0 Documentation

If you get an error message such as the following,

foo.1:6. Overloaded declaration ignored. Spam::foo(double)

foo.i:5. Previous declaration is Spam::foo(int)

foo.i:7. Overloaded declaration ignored. Spam::foo(Bar *,Spam *,int)
foo.i:5. Previous declaration is Spam::foo(int)

it means that the target language module has not yet implemented support for overloaded functions and methods. The only way to fix the problem is to read the

next section.

6.15.3 Ambiguity resolution and renaming

If an ambiguity in overload resolution occurs or if a module doesn't allow overloading, there are a few strategies for dealing with the problem. First, you can tell
SWIG to ignore one of the methods. This is easy---simply use the $ignore directive. For example:

%$ignore foo(long);

void foo(int);
void foo (long); // Ignored. Oh well.

The other alternative is to rename one of the methods. This can be done using $ rename. For example:

$rename ("foo_short") foo(short);
$rename (foo long) foo(long);

void foo(int);
void foo (short); // Accessed as foo_short()
void foo(long); // Accessed as foo_long ()

Note that the quotes around the new name are optional, however, should the new name be a C/C++ keyword they would be essential in order to avoid a parsing
error. The $ignore and $rename directives are both rather powerful in their ability to match declarations. When used in their simple form, they apply to both

global functions and methods. For example:

/* Forward renaming declarations */
$rename (foo i) foo(int);
$rename (foo d) foo (double);

void foo (int); // Becomes 'foo i'
void foo(char *c); // Stays 'foo' (not renamed)

class Spam {

public:
void foo (int); // Becomes 'foo i'
void foo (double) ; // Becomes 'foo d'

}i

If you only want the renaming to apply to a certain scope, the C++ scope resolution operator (::) can be used. For example:

// Only rename foo(int) in the global scope.

$rename (foo i) ::foo(int);
// (will not rename class members)
$rename (foo i) Spam::foo(int); // Only rename foo (int) in class Spam

When a renaming operator is applied to a class as in Spam: : foo (int), it is applied to that class and all derived classes. This can be used to apply a consistent
renaming across an entire class hierarchy with only a few declarations. For example:

$rename (foo i) Spam::foo(int);
$rename (foo _d) Spam::foo(double);

class Spam {

public:
virtual void foo(int); // Renamed to foo i
virtual void foo (double); // Renamed to foo d

}i

class Bar : public Spam {
public:
virtual void foo(int); // Renamed to foo i

6.15 Wrapping Overloaded Functions and Methods

SWIG-3.0 Documentation

virtual void foo (double); // Renamed to foo d
bi

class Grok : public Bar {

public:
virtual void foo(int); // Renamed to foo i
virtual void foo (double); // Renamed to foo d

}i

It is also possible to include $ rename specifications in the class definition itself. For example:

class Spam {
$rename (foo i) foo(int);
$rename (foo d) foo(double);

public:
virtual void foo(int); // Renamed to foo i
virtual void foo (double); // Renamed to foo d

}i

class Bar : public Spam {

public:
virtual void foo(int); // Renamed to foo i
virtual void foo (double); // Renamed to foo d

}i

In this case, the $rename directives still get applied across the entire inheritance hierarchy, but it's no longer necessary to explicitly specify the class prefix
Spam: :.

A special form of $rename can be used to apply a renaming just to class members (of all classes):

%rename (foo i) *::foo(int); // Only rename foo(int) if it appears in a class.

Note: the * : : syntax is non-standard C++, but the '*' is meant to be a wildcard that matches any class name (we couldn't think of a better alternative so if you
have a better idea, send email to the swig-devel mailing list.

Although this discussion has primarily focused on % rename all of the same rules also apply to $ignore. For example:

%$ignore foo (double) ; // Ignore all foo (double)

%ignore Spam::foo; // Ignore foo in class Spam

%ignore Spam::foo (double) ; // Ignore foo(double) in class Spam
%$ignore *::foo (double); // Ignore foo(double) in all classes

When applied to a base class, $ignore forces all definitions in derived classes to disappear. For example, $ignore Spam: :foo (double) will eliminate
foo (double) in Spam and all classes derived from Spam.

Notes on %rename and %ignore:

e Since, the $rename declaration is used to declare a renaming in advance, it can be placed at the start of an interface file. This makes it possible to apply a
consistent name resolution without having to modify header files. For example:

$module foo
/* Rename these overloaded functions */
$rename (foo i) foo(int);

$rename (foo d) foo (double);

%$include "header.h"

e The scope qualifier (::) can also be used on simple names. For example:

$rename (bar) ::foo; // Rename foo to bar in global scope only
$rename (bar) Spam::foo; // Rename foo to bar in class Spam only
$rename (bar) *::foo; // Rename foo in classes only

e Name matching tries to find the most specific match that is defined. A qualified name such as Spam: : foo always has higher precedence than an
unqualified name foo. Spam: : foo has higher precedence than * : : foo and * : : foo has higher precedence than foo. A parameterized name has

6.15 Wrapping Overloaded Functions and Methods

79

http://www.swig.org/mail.html

SWIG-3.0 Documentation

higher precedence than an unparameterized name within the same scope level. However, an unparameterized name with a scope qualifier has higher
precedence than a parameterized name in global scope (e.g., a renaming of Spam: : foo takes precedence over a renaming of foo (int)).

® The order in which $rename directives are defined does not matter as long as they appear before the declarations to be renamed. Thus, there is no

difference between saying:

$rename (bar)
$rename (foo i)
$rename (Foo)

foo;

Spam: : foo;

Spam: :foo (int);

and this

$rename (Foo)
$rename (bar)
$rename (foo i)

Spam: : foo;
foo;

Spam: :foo (int);

(the declarations are not stored

in a linked list and order has no importance). Of course, a repeated $ rename directive will change the setting for a previous

%$rename directive if exactly the same name, scope, and parameters are supplied.

e For multiple inheritance where
hierarchy is used.

renaming rules are defined for multiple base classes, the first renaming rule found on a depth-first traversal of the class

e The name matching rules strictly follow member qualification rules. For example, if you have a class like this:

class Spam {
public:

void bar ()

}i

const;

the declaration

%rename (name)

Spam: :bar () ;

will not apply as there is no unqualified member bar (). The following will apply as the qualifier matches correctly:

%rename (name)

Spam: :bar () const;

An often overlooked C++ feature is that classes can define two different overloaded members that differ only in their qualifiers, like this:

class Spam {
public:

void bar();
void bar ()

}i

// Unqualified member

const; // Qualified member

%rename can then be used to target each of the overloaded methods individually. For example we can give them separate names in the target language:

$rename (namel)
$rename (name2)

Spam: :bar () ;

Spam: :bar () const;

Similarly, if you merely wanted to ignore one of the declarations, use $ignore with the full qualification. For example, the following directive would tell
SWIG to ignore the const version of bar () above:

%$ignore Spam::

bar () const; // Ignore bar() const, but leave other bar() alone

e Currently no resolution is performed in order to match function parameters. This means function parameter types must match exactly. For example,

namespace qualifiers and typedefs will not work. The following usage of typedefs demonstrates this:

typedef int Integer;

$rename (foo i) foo(int);

6.15 Wrapping Overloaded Functions and Methods

80

SWIG-3.0 Documentation

class Spam {
public:

void foo(Integer); // Stays 'foo' (not renamed)
}i
class Ham {
public:

void foo(int); // Renamed to foo_ i

}i

e The name matching rules also use default arguments for finer control when wrapping methods that have default arguments. Recall that methods with default
arguments are wrapped as if the equivalent overloaded methods had been parsed (Default arguments section). Let's consider the following example class:

class Spam {
public:

void bar (int i=-1, double d=0.0);

}i

The following $rename will match exactly and apply to all the target language overloaded methods because the declaration with the default arguments

exactly matches the wrapped method:

%rename (newbar) Spam::bar(int i=-1, double d=0.0);

The C++ method can then be called from the target language with the new name no matter how many arguments are specified, for example: newbar (2,
2.0),newbar (2) or newbar (). However, if the $rename does not contain the default arguments, it will only apply to the single equivalent target

language overloaded method. So if instead we have:

%rename (newbar) Spam::bar(int i, double d);

The C++ method must then be called from the target language with the new name newbar (2,

2.0) when both arguments are supplied or with the

original name as bar (2) (one argument) or bar () (no arguments). In fact it is possible to use $rename on the equivalent overloaded methods, to

rename all the equivalent overloaded methods:

$rename (bar_2args) double d);
$rename (bar larg)

$rename (bar default)

Spam: :bar (int i,
Spam: :bar (int 1i);
Spam: :bar () ;

Similarly, the extra overloaded methods can be selectively ignored using $ignore.

Compatibility note: The $rename directive introduced the default argument matching rules in SWIG-1.3.23 at the same time as the changes to wrapping

methods with default arguments was introduced.

6.15.4 Comments on overloading

Support for overloaded methods was first added in SWIG-1.3.14. The implementation is somewhat unusual when compared to similar tools. For instance, the
order in which declarations appear is largely irrelevant in SWIG. Furthermore, SWIG does not rely upon trial execution or exception handling to figure out which

method to invoke.

Internally, the overloading mechanism is completely configurable by the target language module. Therefore, the degree of overloading support may vary from
language to language. As a general rule, statically typed languages like Java are able to provide more support than dynamically typed languages like Perl, Python,

Ruby, and Tcl.

6.16 Wrapping overloaded operators

C++ overloaded operator declarations can be wrapped. For example, consider a class like this:

class Complex {
private:
double rpart,
public:
Complex (double r = 0, double i = 0)
Complex (const Complex &c) rpart(c.rpart),
Complex &operator=(const Complex &c) {
rpart = c.rpart;
ipart = c.ipart;
return *this;
}
Complex operator+(const Complex &c)

ipart;

rpart(r), ipart(i) { }
ipart(c.ipart) { }

const {

6.16 Wrapping overloaded operators

81

SWIG-3.0 Documentation

return Complex (rpart+c.rpart, ipart+c.ipart);
}
Complex operator-(const Complex &c) const {
return Complex (rpart-c.rpart, ipart-c.ipart);
}
Complex operator* (const Complex &c) const {
return Complex (rpart*c.rpart - ipart*c.ipart,
rpart*c.ipart + c.rpart*ipart);
}
Complex operator-() const {
return Complex (-rpart, -ipart);
}
double re() const { return rpart; }
double im() const { return ipart; }
}i

When operator declarations appear, they are handled in exactly the same manner as regular methods. However, the names of these methods are set to strings like
"operator +"or"operator -".The problem with these names is that they are illegal identifiers in most scripting languages. For instance, you can't just
create a method called "operator +" in Python--there won't be any way to call it.

Some language modules already know how to automatically handle certain operators (mapping them into operators in the target language). However, the
underlying implementation of this is really managed in a very general way using the $rename directive. For example, in Python a declaration similar to this is
used:

%rename(_add) Complex::operator+;

This binds the + operator to a method called add (which is conveniently the same name used to implement the Python + operator). Internally, the generated
wrapper code for a wrapped operator will look something like this pseudocode:

_wrap_Complex add__ (args) {
get args
obj->operator+ (args);

When used in the target language, it may now be possible to use the overloaded operator normally. For example:

>>> a = Complex(3,4)
>>> b = Complex(5,2)
>>>c=a+b # Invokes add method

It is important to realize that there is nothing magical happening here. The $ rename directive really only picks a valid method name. If you wrote this:

%rename (add) operator+;

The resulting scripting interface might work like this:

a = Complex(3,4)
Complex (5,2)
a.add (b) # Call a.operator+ (b)

Qo
[l

All of the techniques described to deal with overloaded functions also apply to operators. For example:

%$ignore Complex::operator=; // Ignore = in class Complex
%$ignore *::operator=; // Ignore = in all classes
%$ignore operator=; // Ignore = everywhere.
%rename(_ sub) Complex::operator-;

$rename(_ neg) Complex::operator-(); // Unary -

The last part of this example illustrates how multiple definitions of the operator- method might be handled.
Handling operators in this manner is mostly straightforward. However, there are a few subtle issues to keep in mind:

e In C++, it is fairly common to define different versions of the operators to account for different types. For example, a class might also include a friend
function like this:

class Complex {

6.16 Wrapping overloaded operators

82

SWIG-3.0 Documentation

public:

friend Complex operator+ (Complex &, double);
}i
Complex operator+ (Complex &, double);

SWIG simply ignores all f£riend declarations. Furthermore, it doesn't know how to associate the associated operator+ with the class (because it's not a

member of the class).

It's still possible to make a wrapper for this operator, but you'll have to handle it like a normal function. For example:

%rename (add complex double) operator+(Complex &, double);

e (Certain operators are ignored by default. For instance, new and delete operators are ignored as well as conversion operators.

e The semantics of certain C++ operators may not match those in the target language.

6.17 Class extension

New methods can be added to a class using the

functionality to an existing class. For example :

$extend directive. This directive is primarily used in conjunction with proxy classes to add additional

$module vector
%1
#include "vector.h"

%}

class Vector {
public:
double x,y,z;
Vector ()
~Vector () ;
bunch of C++ methods
%extend {
char * str_ () |
static char temp[256];

o o

return &temp[0];

}
}i

sprintf (temp,"[%9, %g, %g 1", S$self->x,S$self->y,$self->z);

This code addsa str method to our class for producing a string representation of the object. In Python, such a method would allow us to print the value of

an object using the print command.

>>>

>>> v = Vector():;
>>> v.x 3

>>> v.y = 4

>>> v.z = 0

>>> print (v)

[3.0, 4.0, 0.0]
>>>

The C++ 'this' pointer is often needed to access member variables, methods etc. The $self special variable should be used wherever you could use 'this'. The
example above demonstrates this for accessing member variables. Note that the members dereferenced by $self must be public members as the code is
ultimately generated into a global function and so will not have any access to non-public members. The implicit 'this' pointer that is present in C++ methods is not
present in $extend methods. In order to access anything in the extended class or its base class, an explicit 'this' is required. The following example shows how

one could access base class members:

struct Base {
virtual void method (int v)

}
int value;
}i
struct Derived
}i
%extend Derived {
virtual void method (int v)
$self->Base: :method (v) ;
S$self->value = v;

Base {

6.17 Class extension

{

{
// akin to this->Base::method(v);
// akin to this->value = v;

83

SWIG-3.0 Documentation

The following special variables are expanded if used within a %extend block: $name, $symname, $overname, $decl, $fulldecl, $parentclassname and
$parentclasssymname. The Special variables section provides more information each of these special variables.

The $extend directive follows all of the same conventions as its use with C structures. Please refer to the Adding member functions to C structures section for
further details.

Compatibility note: The $extend directive is a new name for the $addmethods directive in SWIGI.1. Since $addmethods could be used to extend a
structure with more than just methods, a more suitable directive name has been chosen.

6.18 Templates

Template type names may appear anywhere a type is expected in an interface file. For example:

void foo (vector<int> *a, int n);
void bar (list<int, 100> *x);

There are some restrictions on the use of non-type arguments. Simple literals are supported, and so are some constant expressions. However, use of '<' and ">'
within a constant expressions currently is not supported by SWIG ('<=' and ">=" are though). For example:

void bar (list<int, 100> *x); // OK
void bar (list<int,2*50> *x); // OK
void bar(list<int, (2>1 ? 100 : 50)> *x) // Not supported

The type system is smart enough to figure out clever games you might try to play with typede . For instance, consider this code:

typedef int Integer;
void foo(vector<int> *x, vector<Integer> *y);

In this case, vector<Integer> is exactly the same type as vector<int>. The wrapper for foo () will accept either variant.

Starting with SWIG-1.3.7, simple C++ template declarations can also be wrapped. SWIG-1.3.12 greatly expands upon the earlier implementation. Before
discussing this any further, there are a few things you need to know about template wrapping. First, a bare C++ template does not define any sort of runnable
object-code for which SWIG can normally create a wrapper. Therefore, in order to wrap a template, you need to give SWIG information about a particular
template instantiation (e.g., vector<int>, array<double>, etc.). Second, an instantiation name such as vector<int> is generally not a valid identifier
name in most target languages. Thus, you will need to give the template instantiation a more suitable name such as intvector when creating a wrapper.

To illustrate, consider the following template definition:

template<class T> class List {
private:
T *data;
int nitems;
int maxitems;
public:
List (int max) {
data = new T [max];
nitems = 0;
maxitems = max;
}
~List () {
delete [] data;
bi
void append (T obj) {
if (nitems < maxitems) {
data[nitems++] = obj;

}
int length() {
return nitems;

}
T get(int n) {
return datal([n];

}i

By itself, this template declaration is useless--SWIG simply ignores it because it doesn't know how to generate any code until unless a definition of T is provided.

6.18 Templates

84

SWIG-3.0 Documentation

One way to create wrappers for a specific template instantiation is to simply provide an expanded version of the class directly like this:

%rename (intList) List<int>; // Rename to a suitable identifier
class List<int> {
private:

int *data;

int nitems;

int maxitems;

public:
List (int max);
~List () ;

void append(int obj);
int length();
int get(int n);

}i

The $rename directive is needed to give the template class an appropriate identifier name in the target language (most languages would not recognize C++
template syntax as a valid class name). The rest of the code is the same as what would appear in a normal class definition.

Since manual expansion of templates gets old in a hurry, the $template directive can be used to create instantiations of a template class. Semantically,
$template is simply a shortcut---it expands template code in exactly the same way as shown above. Here are some examples:

/* Instantiate a few different versions of the template */
Stemplate (intList) List<int>;
Stemplate (doubleList) List<double>;

The argument to $template () is the name of the instantiation in the target language. The name you choose should not conflict with any other declarations in
the interface file with one exception---it is okay for the template name to match that of a typedef declaration. For example:

Stemplate (intList) List<int>;

typedef List<int> intList; // OK

SWIG can also generate wrappers for function templates using a similar technique. For example:

// Function template
template<class T> T max(T a, T b) { return a >b ? a : b; }

// Make some different versions of this function
Stemplate (maxint) max<int>;
Stemplate (maxdouble) max<double>;

In this case, maxint and maxdouble become unique names for specific instantiations of the function.

The number of arguments supplied to $template should match that in the original template definition. Template default arguments are supported. For example:

template vector<typename T, int max=100> class vector ({

}i

%template (intvec) vector<int>; // OK
Stemplate (vecl000) vector<int,1000>; // OK

The $template directive should not be used to wrap the same template instantiation more than once in the same scope. This will generate an error. For
example:

Stemplate (intList) List<int>;
Stemplate (Listint) List<int>; // Error. Template already wrapped.

This error is caused because the template expansion results in two identical classes with the same name. This generates a symbol table conflict. Besides, it
probably more efficient to only wrap a specific instantiation only once in order to reduce the potential for code bloat.

Since the type system knows how to handle t ypedef, it is generally not necessary to instantiate different versions of a template for typenames that are
equivalent. For instance, consider this code:

Stemplate (intList) wvector<int>;
typedef int Integer;

6.18 Templates

85

SWIG-3.0 Documentation

void foo (vector<Integer> *x);

In this case, vector<Integer> is exactly the same type as vector<int>. Any use of Vector<Integer> is mapped back to the instantiation of
vector<int> created earlier. Therefore, it is not necessary to instantiate a new class for the type Integer (doing so is redundant and will simply result in
code bloat).

When a template is instantiated using $template, information about that class is saved by SWIG and used elsewhere in the program. For example, if you wrote
code like this,

Stemplate (intList) List<int>;
class Ultralist : public List<int> {

}i

then SWIG knows that List<int> was already wrapped as a class called intList and arranges to handle the inheritance correctly. If, on the other hand,
nothing is known about List<int>, you will get a warning message similar to this:

example.h:42: Warning 401. Nothing known about class 'List<int >'. Ignored.
example.h:42: Warning 401. Maybe you forgot to instantiate 'List<int >' using S$template.

If a template class inherits from another template class, you need to make sure that base classes are instantiated before derived classes. For example:

template<class T> class Foo {

}i

template<class T> class Bar : public Foo<T> {
}i

// Instantiate base classes first

Stemplate (intFoo) Foo<int>;

%template (doubleFoo) Foo<double>;

// Now instantiate derived classes

Stemplate (intBar) Bar<int>;
%template (doubleBar) Bar<double>;

The order is important since SWIG uses the instantiation names to properly set up the inheritance hierarchy in the resulting wrapper code (and base classes need
to be wrapped before derived classes). Don't worry--if you get the order wrong, SWIG should generate a warning message.

Occasionally, you may need to tell SWIG about base classes that are defined by templates, but which aren't supposed to be wrapped. Since SWIG is not able to
automatically instantiate templates for this purpose, you must do it manually. To do this, simply use the empty template instantiation, that is, $template with
no name. For example:

// Instantiate traits<double,double>, but don't wrap it.
Stemplate () traits<double,double>;

If you have to instantiate a lot of different classes for many different types, you might consider writing a SWIG macro. For example:

%define TEMPLATE WRAP (prefix, T...)
Stemplate (prefix ## Foo) Foo<T >;
Stemplate (prefix ## Bar) Bar<T >;

$enddef

TEMPLATE7WRAP(int, int)

TEMPLATE WRAP (double, double)

TEMPLATE7WRAP(String, char *)
TEMPLATE WRAP (PairStringInt, std::pair<string, int>)

Note the use of a vararg macro for the type T. If this wasn't used, the comma in the templated type in the last example would not be possible.

The SWIG template mechanism does support specialization. For instance, if you define a class like this,

template<> class List<int> {

6.18 Templates

SWIG-3.0 Documentation

private:
int *data;
int nitems;
int maxitems;

public:
List (int max);
~List();

void append(int obj);
int length();
int get(int n);

}i

then SWIG will use this code whenever the user expands List<int> . In practice, this may have very little effect on the underlying wrapper code since
specialization is often used to provide slightly modified method bodies (which are ignored by SWIG). However, special SWIG directives such as $typemap,
%extend, and so forth can be attached to a specialization to provide customization for specific types.

Partial template specialization is partially supported by SWIG. For example, this code defines a template that is applied when the template argument is a pointer.

template<class T> class List<T*> {
private:

T *data;

int nitems;

int maxitems;

public:
List (int max);
~List();

void append(int obj);
int length();
T get(int n);

}i

SWIG supports both template explicit specialization and partial specialization. Consider:

template<class T1l, class T2> class Foo { }; // (1) primary template
template<> class Foo<double *, int *> { }; // (2) explicit specialization
template<class T1l, class T2> class Foo<Tl, T2 *> { }; // (3) partial specialization

SWIG is able to properly match explicit instantiations:

Foo<double *, int *> // explicit specialization matching (2)

SWIG implements template argument deduction so that the following partial specialization examples work just like they would with a C++ compiler:

Foo<int *, int *> // partial specialization matching (3)
Foo<int *, const int *> // partial specialization matching (3)
Foo<int *, int **> // partial specialization matching (3)

Member function templates are supported. The underlying principle is the same as for normal templates--SWIG can't create a wrapper unless you provide more
information about types. For example, a class with a member template might look like this:

class Foo {
public:
template<class T> void bar(T x, T y) { ... };

}i

To expand the template, simply use $template inside the class.

class Foo {

public:
template<class T> void bar(T x, T y) { ... };
Stemplate (barint) bar<int>;

%template (bardouble) bar<double>;
}i

Or, if you want to leave the original class definition alone, just do this:

6.18 Templates

SWIG-3.0 Documentation

class Foo {
public:
template<class T> void bar(T x, T y) { ... };

}i

%$extend Foo {
Stemplate (barint) bar<int>;
%template (bardouble) bar<double>;
}i

or simply

class Foo {
public:
template<class T> void bar(T x, T y) { ... };

}i

Stemplate (bari) Foo::bar<int>;
Stemplate (bard) Foo::bar<double>;

In this case, the $extend directive is not needed, and $template does exactly the same job, i.e., it adds two new methods to the Foo class.
Note: because of the way that templates are handled, the $template directive must always appear affer the definition of the template to be expanded.

Now, if your target language supports overloading, you can even try

Stemplate (bar) Foo::bar<int>;
%template (bar) Foo::bar<double>;

and since the two new wrapped methods have the same name 'bar', they will be overloaded, and when called, the correct method will be dispatched depending on
the argument type.

When used with members, the $template directive may be placed in another template class. Here is a slightly perverse example:

// A template
template<class T> class Foo {
public:
// A member template
template<class S> T bar(S %, S vy) { ... };

}i

// Expand a few member templates
%$extend Foo {
$template (bari) bar<int>;
$template (bard) bar<double>;

// Create some wrappers for the template
%template (Fooi) Foo<int>;
%template (Food) Foo<double>;

Miraculously, you will find that each expansion of Foo has member functions bari () and bard () added.

A common use of member templates is to define constructors for copies and conversions. For example:

template<class T1l, class T2> struct pair {

Tl first;

T2 second;

pair() : first(T1()), second(T2()) { }

pair(const Tl &x, const T2 &y) : first(x), second(y) { }

template<class Ul, class U2> pair(const pair<Ul,U2> &x)

first(x.first), second(x.second) { }

}i

This declaration is perfectly acceptable to SWIG, but the constructor template will be ignored unless you explicitly expand it. To do that, you could expand a few
versions of the constructor in the template class itself. For example:

6.18 Templates

SWIG-3.0 Documentation

%extend pair {
$template (pair) pair<Tl,T2>; // Generate default copy constructor
}i

When using $extend in this manner, notice how you can still use the template parameters in the original template definition.

Alternatively, you could expand the constructor template in selected instantiations. For example:

// Instantiate a few versions
Stemplate (pairii) pair<int,int>;
Stemplate (pairdd) pair<double,double>;

// Create a default constructor only
$extend pair<int,int> {

$template (paird) pair<int,int>; // Default constructor
}i

// Create default and conversion constructors
%extend pair<double,double> {
$template (paird) pair<double,dobule>; // Default constructor
$template (pairc) pair<int,int>; // Conversion constructor
}i

And if your target language supports overloading, then you can try instead:

// Create default and conversion constructors
%$extend pair<double,double> {
$template (pair) pair<double,dobule>; // Default constructor
Stemplate (pair) pair<int,int>; // Conversion constructor
}i

In this case, the default and conversion constructors have the same name. Hence, SWIG will overload them and define an unique visible constructor, that will
dispatch the proper call depending on the argument type.

If all of this isn't quite enough and you really want to make someone's head explode, SWIG directives such as $rename, $extend, and $typemap can be
included directly in template definitions. For example:

// File : list.h
template<class T> class List {

public:

$rename (_ getitem) get(int);
List (int max);
~List();

T get (int index);
$extend {
char * str () {
/* Make a string representation */

}i

In this example, the extra SWIG directives are propagated to every template instantiation.

It is also possible to separate these declarations from the template class. For example:

Srename (__getitem) List::get;
%extend List {
char * str () {
/* Make a string representation */

}
/* Make a copy */
T * copy () {
return new List<T>(*$self);
}
}i

template<class T> class List {

6.18 Templates

SWIG-3.0 Documentation

public:
List () { }
T get(int index);

}i

When $extend is decoupled from the class definition, it is legal to use the same template parameters as provided in the class definition. These are replaced
when the template is expanded. In addition, the $extend directive can be used to add additional methods to a specific instantiation. For example:

Stemplate (intList) List<int>;
$extend List<int> {
void blah() {

printf ("Hey, I'm an List<int>!\n");

}i

SWIG even supports overloaded templated functions. As usual the $template directive is used to wrap templated functions. For example:

template<class T> void foo(T x) { };
template<class T> void foo(T x, T y) { };

Stemplate (foo) foo<int>;

This will generate two overloaded wrapper methods, the first will take a single integer as an argument and the second will take two integer arguments.

Needless to say, SWIG's template support provides plenty of opportunities to break the universe. That said, an important final point is that SWIG does not
perform extensive error checking of templates! Specifically, SWIG does not perform type checking nor does it check to see if the actual contents of the
template declaration make any sense. Since the C++ compiler checks this when it compiles the resulting wrapper file, there is no practical reason for SWIG to
duplicate this functionality.

As SWIG's template support does not perform type checking $template can be used as early as after a template declaration. You can, and rarely have to, use
%template before the template parameters have been declared. For example:

template <class T> class OuterTemplateClass {};

// The nested class OuterClass::InnerClass inherits from the template class
// OuterTemplateClass<OuterClass::InnerStruct> and thus the template needs
// to be expanded with %template before the OuterClass declaration.
$template (OuterTemplateClass OuterClass InnerStruct)
OuterTemplateClass<OuterClass::InnerStruct>

// Don't forget to use %$feature("flatnested") for OuterClass::InnerStruct and
// OuterClass::InnerClass if the target language doesn't support nested classes.
class OuterClass {
public:
// Forward declarations:
struct InnerStruct;
class InnerClass;
}i

struct OuterClass::InnerStruct {};

// Expanding the template at this point with %$template is too late as the
// OuterClass::InnerClass declaration is processed inside OuterClass.

class OuterClass::InnerClass : public OuterTemplateClass<InnerStruct> {};

Compatibility Note: The first implementation of template support relied heavily on macro expansion in the preprocessor. Templates have been more tightly
integrated into the parser and type system in SWIG-1.3.12 and the preprocessor is no longer used. Code that relied on preprocessing features in template
expansion will no longer work. However, SWIG still allows the # operator to be used to generate a string from a template argument.

Compatibility Note: In earlier versions of SWIG, the $template directive introduced a new class name. This name could then be used with other directives.
For example:

Stemplate (vectori) vector<int>;
%extend vectori {

void somemethod() { }
}i

6.18 Templates

SWIG-3.0 Documentation

This behavior is no longer supported. Instead, you should use the original template name as the class name. For example:

}i

Stemplate (vectori) wvector<int>;
%$extend vector<int> {

void somemethod() { }

Similar changes apply to typemaps and other customization features.

6.19 Namespaces

Support for C++ namespaces is comprehensive, but by default simple, however, some target languages can turn on more advanced namespace support via the
nspace feature, described later. Code within unnamed namespaces is ignored as there is no external access to symbols declared within the unnamed namespace.
Before detailing the default implementation for named namespaces, it is worth noting that the semantics of C++ namespaces is extremely non-trivial--especially
with regard to the C++ type system and class machinery. At a most basic level, namespaces are sometimes used to encapsulate common functionality. For

example:

namespace math {
double sin(double) ;
double cos (double);

class Complex {
double im,re;
public:

}i

}i

Members of the namespace are accessed in C++ by prepending the namespace prefix to names. For example:

double x = math::sin(1.0);
double magnitude (math::Complex *c);
math::Complex c;

At this level, namespaces are relatively easy to manage. However, things start to get very ugly when you throw in the other ways a namespace can be used. For

example, selective symbols can be exported from a namespace with using.

using math::Complex;
double magnitude (Complex *c); // Namespace prefix stripped

Similarly, the contents of an entire namespace can be made available like this:

using namespace math;
double x = sin(1.0);
double magnitude (Complex *c);

Alternatively, a namespace can be aliased:

namespace M = math;
double x = M::sin(1.0);
double magnitude (M::Complex *c);

Using combinations of these features, it is possible to write head-exploding code like this:

namespace A |
class Foo {
}i

namespace B {
namespace C {
using namespace A;
}
typedef C::Foo FooClass;

6.19 Namespaces

91

SWIG-3.0 Documentation

namespace BIGB = B;

namespace D {
using BIGB::FooClass;
class Bar : public FooClass {
}

}i

class Spam : public D::Bar {
}i

void evil (A::Foo *a, B::FooClass *b, B::C::Foo *c, BIGB::FooClass *d,
BIGB::C::Foo *e, D::FooClass *f);

Given the possibility for such perversion, it's hard to imagine how every C++ programmer might want such code wrapped into the target language. Clearly this
code defines three different classes. However, one of those classes is accessible under at least six different names!

SWIG fully supports C++ namespaces in its internal type system and class handling code. If you feed SWIG the above code, it will be parsed correctly, it will
generate compilable wrapper code, and it will produce a working scripting language module. However, the default wrapping behavior is to flatten namespaces in
the target language. This means that the contents of all namespaces are merged together in the resulting scripting language module. For example, if you have code
like this,

$module foo

namespace foo {
void bar (int);
void spam() ;

namespace bar {
void blah();

then SWIG simply creates three wrapper functions bar (), spam (), and blah () in the target language. SWIG does not prepend the names with a namespace
prefix nor are the functions packaged in any kind of nested scope.

There is some rationale for taking this approach. Since C++ namespaces are often used to define modules in C++, there is a natural correlation between the likely
contents of a SWIG module and the contents of a namespace. For instance, it would not be unreasonable to assume that a programmer might make a separate
extension module for each C++ namespace. In this case, it would be redundant to prepend everything with an additional namespace prefix when the module itself
already serves as a namespace in the target language. Or put another way, if you want SWIG to keep namespaces separate, simply wrap each namespace with its
own SWIG interface.

Because namespaces are flattened, it is possible for symbols defined in different namespaces to generate a name conflict in the target language. For example:

namespace A |
void foo (int);
}
namespace B {
void foo (double);

When this conflict occurs, you will get an error message that resembles this:

example.i:26. Error. 'foo' is multiply defined in the generated target language module.
example.i:23. Previous declaration of 'foo'

To resolve this error, simply use $rename to disambiguate the declarations. For example:

%$rename (B_foo) B::foo;

namespace A {
void foo(int);
}
namespace B {
void foo (double) ; // Gets renamed to B_foo

Similarly, $ignore can be used to ignore declarations.

using declarations do not have any effect on the generated wrapper code. They are ignored by SWIG language modules and they do not result in any code.

6.19 Namespaces

92

SWIG-3.0 Documentation

However, these declarations are used by the internal type system to track type-names. Therefore, if you have code like this:

namespace A {

typedef int Integer;
}
using namespace A;
void foo(Integer x);

SWIG knows that Integer is the same as A: : Integer which is the same as int.

Namespaces may be combined with templates. If necessary, the $template directive can be used to expand a template defined in a different namespace. For
example:

namespace foo {
template<typename T> T max(T a, T b) { return a > b ? a : b; }

using foo::max;

%template (maxint) max<int>; // Okay.
Stemplate (maxfloat) foo::max<float>; // Okay (qualified name) .

namespace bar {
using namespace foo;
Stemplate (maxdouble) max<double>; // Okay.

The combination of namespaces and other SWIG directives may introduce subtle scope-related problems. The key thing to keep in mind is that all SWIG
generated wrappers are produced in the global namespace. Symbols from other namespaces are always accessed using fully qualified names---names are never
imported into the global space unless the interface happens to do so with a using declaration. In almost all cases, SWIG adjusts typenames and symbols to be
fully qualified. However, this is not done in code fragments such as function bodies, typemaps, exception handlers, and so forth. For example, consider the
following:

namespace foo {
typedef int Integer;
class bar {
public:

bi
$extend foo::bar {
Integer add(Integer x, Integer y) {

Integer r = x + y; // Error. Integer not defined in this scope
return r;

}i

In this case, SWIG correctly resolves the added method parameters and return type to foo: : Integer. However, since function bodies aren't parsed and such
code is emitted in the global namespace, this code produces a compiler error about Integer. To fix the problem, make sure you use fully qualified names. For
example:

$extend foo::bar {
Integer add(Integer x, Integer y) {
foo::Integer r = x + y; // Ok.
return r;

}i

Note: SWIG does not propagate using declarations to the resulting wrapper code. If these declarations appear in an interface, they should also appear in any
header files that might have been includedina ${ ... %} section. In other words, don't insert extra using declarations into a SWIG interface unless they also
appear in the underlying C++ code.

Note: Code inclusion directives suchas ${ ... %} or%inline %{ ... %} should not be placed inside a namespace declaration. The code emitted by
these directives will not be enclosed in a namespace and you may get very strange results. If you need to use namespaces with these directives, consider the
following:

// Good version
%inline %{
namespace foo {
void bar(int) { ... }

6.19 Namespaces

93

SWIG-3.0 Documentation

o0 —

// Bad version. Emitted code not placed in namespace.
namespace foo {
%inline %{

void bar(int) { ... } /* I'm bad */

— oQ

Note: When the $extend directive is used inside a namespace, the namespace name is included in the generated functions. For example, if you have code like
this,

namespace foo {
class bar {
public:
sextend {
int blah(int x);
bi

the added method blah () is mapped to a function int foo bar blah(foo::bar *self, int x).This function resides in the global namespace.

Note: Although namespaces are flattened in the target language, the SWIG generated wrapper code observes the same namespace conventions as used in the input
file. Thus, if there are no symbol conflicts in the input, there will be no conflicts in the generated code.

Note: In the same way that no resolution is performed on parameters, a conversion operator name must match exactly to how it is defined. Do not change the
qualification of the operator. For example, suppose you had an interface like this:

namespace foo {
class bar;
class spam {
public:

operator bar(); // Conversion of spam -> bar

The following is how the feature is expected to be written for a successful match:

%rename (tofoo) foo::spam::operator bar();

The following does not work as no namespace resolution is performed in the matching of conversion operator names:

$rename (tofoo) foo::spam::operator foo::bar():;

Note, however, that if the operator is defined using a qualifier in its name, then the feature must use it too...

%rename (tofoo) foo::spam::operator bar(); // will not match
$rename (tofoo) foo::spam::operator foo::bar(); // will match
namespace foo {

class bar;

class spam {

public:

operator foo::bar();

Compatibility Note: Versions of SWIG prior to 1.3.32 were inconsistent in this approach. A fully qualified name was usually required, but would not work in
some situations.

Note: The flattening of namespaces is only intended to serve as a basic namespace implementation. None of the target language modules are currently
programmed with any namespace awareness. In the future, language modules may or may not provide more advanced namespace support.

6.19.1 The nspace feature for namespaces

6.19 Namespaces

SWIG-3.0 Documentation

Some target languages provide support for the nspace feature. The feature can be applied to any class, struct, union or enum declared within a named
namespace. The feature wraps the type within the target language specific concept of a namespace, for example, a Java package or C# namespace. Please see the
language specific sections to see if the target language you are interested in supports the nspace feature.

The feature is demonstrated below for C# using the following example:

$feature ("nspace") MyWorld::Material::Color;
$nspace MyWorld::Wrapping::Color; // %nspace is a macro for %$feature ("nspace")

namespace MyWorld ({
namespace Material ({
class Color {

}i
}

namespace Wrapping {
class Color {

}i

Without the nspace feature directives above or $rename , you would get the following warning resulting in just one of the Color classes being available for
use from the target language:

example.i:9: Error: 'Color' is multiply defined in the generated target language module.
example.i:5: Error: Previous declaration of 'Color'

With the nspace feature the two Color classes are wrapped into the equivalent C# namespaces. A fully qualified constructor call of each these two types in C#
is then:

MyWorld.Material.Color materialColor = new MyWorld.Material.Color();
MyWorld.Wrapping.Color wrappingColor = new MyWorld.Wrapping.Color () ;

Note that the nspace feature does not apply to variables and functions simply declared in a namespace. For example, the following symbols cannot co-exist in
the target language without renaming. This may change in a future version.

namespace MyWorld ({

namespace Material ({
int quantity;
void dispatch();

}

namespace Wrapping {
int quantity;
void dispatch();

Compatibility Note: The nspace feature was first introduced in SWIG-2.0.0.

6.20 Renaming templated types in namespaces

As has been mentioned, when %rename includes parameters, the parameter types must match exactly (no typedef or namespace resolution is performed). SWIG
treats templated types slightly differently and has an additional matching rule so unlike non-templated types, an exact match is not always required. If the fully
qualified templated type is specified, it will have a higher precedence over the generic template type. In the example below, the generic template type is used to
rename to bbb and the fully qualified type is used to rename to ccc.

$rename (bbb) Space::ABC::aaa(T t); // will match but with lower precedence than ccc
$rename (ccc) Space: :ABC<Space: :XYZ>::aaa (Space::XYZ t);// will match but with higher precedence
// than bbb

namespace Space {
class XYZ {};
template<typename T> struct ABC {
void aaa(T t) {}
}i
}
Stemplate (ABCXYZ) Space::ABC<Space: :XYZ>;

It should now be apparent that there are many ways to achieve a renaming with %rename. This is demonstrated by the following two examples, which are

6.20 Renaming templated types in namespaces

SWIG-3.0 Documentation

effectively the same as the above example. Below shows how %rename can be placed inside a namespace.

namespace Space {

$rename (bbb) ABC::aaa(T t); // will match but with lower precedence than ccc
%rename (ccc) ABC<Space::XYZ>::aaa(Space::XYZ t);// will match but with higher precedence than bbb
$rename (ddd) ABC<Space::XYZ>::aaa (XYZ t); // will not match

namespace Space {
class XYZ {};
template<typename T> struct ABC {
void aaal(T t) {}
}i
}
Stemplate (ABCXYZ) Space::ABC<Space: :XYZ>;

Note that ddd does not match as there is no namespace resolution for parameter types and the fully qualified type must be specified for template type expansion.
The following example shows how %rename can be placed within %extend.

namespace Space {
$extend ABC {
%rename (bbb) aaa(T t); // will match but with lower precedence than ccc
}
$extend ABC<Space::XYZ> {
$rename (ccc) aaa(Space::XYZ t);// will match but with higher precedence than bbb
$rename (ddd) aaa (XYZ t); // will not match

namespace Space {
class XYZ {};
template<typename T> struct ABC ({
void aaal(T t) {}
}i
}
Stemplate (ABCXYZ) Space::ABC<Space: :XYZ>;

6.21 Exception specifications

When C++ programs utilize exceptions, exceptional behavior is sometimes specified as part of a function or method declaration. For example:

class Error { };

class Foo {
public:

void blah () throw(Error);

}i

If an exception specification is used, SWIG automatically generates wrapper code for catching the indicated exception and, when possible, rethrowing it into the
target language, or converting it into an error in the target language otherwise. For example, in Python, you can write code like this:

f = Foo()
try:
f.blah ()
except Error,e:
e is a wrapped instance of "Error"

Details of how to tailor code for handling the caught C++ exception and converting it into the target language's exception/error handling mechanism is outlined in
the "throws" typemap section.

Since exception specifications are sometimes only used sparingly, this alone may not be enough to properly handle C++ exceptions. To do that, a different set of

special SWIG directives are used. Consult the "Exception handling with %exception " section for details. The next section details a way of simulating an
exception specification or replacing an existing one.

6.22 Exception handling with %catches

Exceptions are automatically handled for methods with an exception specification. Similar handling can be achieved for methods without exception specifications
through the $catches feature. It is also possible to replace any declared exception specification using the $catches feature. In fact, Scatches uses the
same "throws" typemaps that SWIG uses for exception specifications in handling exceptions. The $catches feature must contain a list of possible types that

6.21 Exception specifications

96

SWIG-3.0 Documentation

can be thrown. For each type that is in the list, SWIG will generate a catch handler, in the same way that it would for types declared in the exception
specification. Note that the list can also include the catch all specification "...". For example,

struct EBase { virtual ~EBase(); };
struct Errorl : EBase { };
struct Error2 : EBase { };
struct Error3 : EBase { };
struct Error4 : EBase { };

%$catches (Errorl,Error2,...) Foo::bar();
%catches (EBase) Foo::blah();

class Foo {
public:

void bar();
void blah () throw(Errorl,Error2,Error3,Errord);

}i

For the Foo: :bar () method, which can throw anything, SWIG will generate catch handlers for Errorl, Error2 as well as a catch all handler (...). Each
catch handler will convert the caught exception and convert it into a target language error/exception. The catch all handler will convert the caught exception into
an unknown error/exception.

Without the $catches feature being attached to Foo: :blah (), SWIG will generate catch handlers for all of the types in the exception specification, that is,
Errorl, Error2, Error3, Error4.However, with the $catches feature above, just a single catch handler for the base class, EBase will be
generated to convert the C++ exception into a target language error/exception.

6.23 Pointers to Members

Starting with SWIG-1.3.7, there is limited parsing support for pointers to C++ class members. For example:

double do op(Object *o, double (Object::*callback) (double,double));
extern double (Object::*fooptr) (double,double) ;
%constant double (Object::*F00) (double,double) = &Object::foo;

Although these kinds of pointers can be parsed and represented by the SWIG type system, few language modules know how to handle them due to
implementation differences from standard C pointers. Readers are strongly advised to consult an advanced text such as the "The Annotated C++ Manual" for
specific details.

When pointers to members are supported, the pointer value might appear as a special string like this:

>>> print example.FOO
~££f0d54a800000000 m Object f double double double
>>>

In this case, the hexadecimal digits represent the entire value of the pointer which is usually the contents of a small C++ structure on most machines.

SWIG's type-checking mechanism is also more limited when working with member pointers. Normally SWIG tries to keep track of inheritance when checking
types. However, no such support is currently provided for member pointers.

6.24 Smart pointers and operator->()

In some C++ programs, objects are often encapsulated by smart-pointers or proxy classes. This is sometimes done to implement automatic memory management
(reference counting) or persistence. Typically a smart-pointer is defined by a template class where the —> operator has been overloaded. This class is then
wrapped around some other class. For example:

// Smart-pointer class
template<class T> class SmartPtr {
T *pointee;

public:
SmartPtr (T *p) : pointee(p) { ... }
T *operator->() {

return pointee;

}i

// Ordinary class
class Foo TImpl {
public:

int x;

6.23 Pointers to Members

97

SWIG-3.0 Documentation

virtual void bar();
}i

// Smart-pointer wrapper
typedef SmartPtr<Foo Impl> Foo;

// Create smart pointer Foo
Foo make Foo () {

return SmartPtr<Foo Impl>(new Foo Impl());
}

// Do something with smart pointer Foo
void do something(Foo f) {
printf ("x = %d\n", f->x);
f->bar();

// Call the wrapped smart pointer proxy class in the target language 'Foo'
$template (Foo) SmartPtr<Foo Impl>;

A key feature of this approach is that by defining operator-> the methods and attributes of the object wrapped by a smart pointer are transparently accessible.
For example, expressions such as these (from the previous example),

f->x
f->bar ()

are transparently mapped to the following

(f.operator->())->x;
(f.operator->())->bar();

When generating wrappers, SWIG tries to emulate this functionality to the extent that it is possible. To do this, whenever operator-> () is encountered in a
class, SWIG looks at its returned type and uses it to generate wrappers for accessing attributes of the underlying object. For example, wrapping the above code
produces wrappers like this:

int Foo x get(Foo *f) {
return (*f)->x;

}

void Foo x set(Foo *f, int value) {
(*f) ->x = value;

}

void Foo bar (Foo *f) {
(*f) ->bar () ;

}

These wrappers take a smart-pointer instance as an argument, but dereference it in a way to gain access to the object returned by operator-> (). You should
carefully compare these wrappers to those in the first part of this chapter (they are slightly different).

The end result is that access looks very similar to C++. For example, you could do this in Python:

>>> f = make Foo ()
>>> print f.x

>>> f.bar ()
>>>

When generating wrappers through a smart-pointer, SWIG tries to generate wrappers for all methods and attributes that might be accessible through operator-
> () . This includes any methods that might be accessible through inheritance. However, there are a number of restrictions:

e Member variables and methods are wrapped through a smart pointer. Enumerations, constructors, and destructors are not wrapped.

e [f the smart-pointer class and the underlying object both define a method or variable of the same name, then the smart-pointer version has precedence. For
example, if you have this code

class Foo {
public:
int x;

}i

class Bar {

6.23 Pointers to Members 98

SWIG-3.0 Documentation

public:

int x;

Foo *operator->();
}i

then the wrapper for Bar: : x accesses the x defined in Bar, and not the x defined in Foo.

If your intent is to only expose the smart-pointer class in the interface, it is not necessary to wrap both the smart-pointer class and the class for the underlying
object. However, you must still tell SWIG about both classes if you want the technique described in this section to work. To only generate wrappers for the smart-

pointer class, you can use the %ignore directive. For example:

%ignore Foo;
class Foo { // Ignored

}i

class Bar {
public:
Foo *operator->();

}i

Alternatively, you can import the definition of Foo from a separate file using $import.

Note: When a class defines operator—-> (), the operator itself is wrapped as a method deref (). For example:
f = Fool() # Smart-pointer
= f. deref () # Raw pointer from operator->

Note: To disable the smart-pointer behavior, use $ignore to ignore operator-> (). For example

%$ignore Bar::operator->;

Note: Smart pointer support was first added in SWIG-1.3.14.

6.25 C++ reference counted objects - ref/unref feature

Another similar idiom in C++ is the use of reference counted objects. Consider for example:

class RCObj {

// implement the ref counting mechanism
int add ref();

int del ref();

int ref count();

public:
virtual ~RCObj () = 0;

int ref() const {
return add ref();
}

int unref() const {
if (ref count() ==
delete this;
return O;
}
return ref count();
}
}i

del ref() ==) A

class A : RCObj {
public:

A();

int foo():
}i

class B {
A * a;

public:

6.25 C++ reference counted objects - ref/unref feature

SWIG-3.0 Documentation

B(A *a) : _a(a) {
a->ref ();
}
~B() {
a->unref () ;
}
}i
int main() {
A *a = new A(); // (count: 0)
a->ref () ; // 'a' ref here (count: 1)
B *bl = new B(a); // 'a' ref here (count: 2)
if (1 + 1 == 2) {
B *b2 = new B(a); // 'a' ref here (count: 3)
delete b2; // 'a' unref, but not deleted (count: 2)
}
delete bl; // 'a' unref, but not deleted (count: 1)
a->unref () ; // 'a' unref and deleted (count: 0)
}

In the example above, the 'A' class instance 'a' is a reference counted object, which can't be deleted arbitrarily since it is shared between the objects 'b1' and 'b2'.
'A' is derived from a Reference Counted Object '"RCOD;j', which implements the ref/unref idiom.

To tell SWIG that 'RCOb;j' and all its derived classes are reference counted objects, use the "ref" and "unref" features. These are also available as $refobject
and Sunrefobject, respectively. For example:

$module example
$feature ("ref") RCObj "S$this->ref();"
$feature ("unref") RCObj "S$this->unref ();"

%$include "rcobj.h"
%$include "A.h"

where the code passed to the "ref" and "unref" features will be executed as needed whenever a new object is passed to python, or when python tries to release the
proxy object instance, respectively.

On the python side, the use of a reference counted object is no different to any other regular instance:

def create A():
a = A() # SWIG ref 'a' - new object is passed to python (count: 1)
bl = B(a) # C++ ref 'a (count: 2)
if 1 + 1 == 2:
b2 = B(a) # C++ ref 'a' (count: 3)
return a # 'bl' and 'b2' are released and deleted, C++ unref 'a' twice (count: 1)
a = create A() # (count: 1)
exit # 'a' is released, SWIG unref 'a' called in the destructor wrapper (count: 0)

Note that the user doesn't explicitly need to call 'a->ref()' nor 'a->unref()' (and neither 'delete a'). Instead, SWIG takes cares of executing the "ref" and "unref" calls
as needed. If the user doesn't specify the "ref/unref" feature for a type, SWIG will produce code equivalent to defining these features:

$feature ("ref") "
%feature ("unref") "delete S$this;"

In other words, SWIG will not do anything special when a new object is passed to python, and it will always 'delete' the underlying object when python releases
the proxy instance.

The %newobject feature is designed to indicate to the target language that it should take ownership of the returned object. When used in conjunction with a type
that has the "ref" feature associated with it, it additionally emits the code in the "ref" feature into the C++ wrapper. Consider wrapping the following factory
function in addition to the above:

%$newobject AFactory;
A *AFactory () {
return new A();

6.25 C++ reference counted objects - ref/unref feature

SWIG-3.0 Documentation

The AFactory function now acts much like a call to the A constructor with respect to memory handling:

a = AFactory () # SWIG ref 'a' due to %newobject (count: 1)
exit # 'a' is released, SWIG unref 'a' called in the destructor wrapper (count: 0)

6.26 Using declarations and inheritance

using declarations are sometimes used to adjust access to members of base classes. For example:

class Foo {
public:

int Dblah(int x);
}i

class Bar {
public:

double blah (double x);
}i

class FooBar : public Foo, public Bar {
public:

using Foo::blah;

using Bar::blah;

char *blah(const char *x);
}i

In this example, the using declarations make different versions of the overloaded blah () method accessible from the derived class. For example:

FooBar *f;

f->blah (3); // Ok. Invokes Foo::blah(int)

f->blah (3.5); // Ok. Invokes Bar::blah (double)

f->blah ("hello"); // Ok. Invokes FooBar::blah(const char *);

SWIG emulates the same functionality when creating wrappers. For example, if you wrap this code in Python, the module works just like you would expect:

>>> import example

>>> f = example.FooBar ()
>>> f.blah(3)

>>> f.blah(3.5)

>>> f.blah("hello")

using declarations can also be used to change access when applicable. For example:

class Foo {
protected:

int x;

int blah(int x);
}i

class Bar : public Foo {

public:
using Foo::x; // Make x public
using Foo::blah; // Make blah public

}i

This also works in SWIG---the exposed declarations will be wrapped normally.

When using declarations are used as shown in these examples, declarations from the base classes are copied into the derived class and wrapped normally. When
copied, the declarations retain any properties that might have been attached using $rename , $ignore, or $feature. Thus, if a method is ignored in a base
class, it will also be ignored by a using declaration.

Because a using declaration does not provide fine-grained control over the declarations that get imported, it may be difficult to manage such declarations in
applications that make heavy use of SWIG customization features. If you can't get us ing to work correctly, you can always change the interface to the
following:

class FooBar : public Foo, public Bar {
public:
#ifndef SWIG

6.26 Using declarations and inheritance 101

SWIG-3.0 Documentation

using Foo::blah;
using Bar::blah;

#else
int blah(int x); // explicitly tell SWIG about other declarations
double blah(double x);

#endif
char *blah(const char *x);

}i

Notes:

e Ifa derived class redefines a method defined in a base class, then a using declaration won't cause a conflict. For example:

class Foo {
public:
int blah(int);
double blah (double) ;
}i

class Bar : public Foo {

public:
using Foo::blah; // Only imports blah (double) ;
int blah(int);

}i

e Resolving ambiguity in overloading may prevent declarations from being imported by using. For example:

%rename (blah long) Foo::blah(long);
class Foo {
public:
int blah(int);
long blah(long); // Renamed to blah long
}i

class Bar : public Foo {

public:
using Foo::blah; // Only imports blah (int)
double blah (double x);

}i

6.27 Nested classes

If the target language supports the nested classes concept (like Java), the nested C++ classes are wrapped as nested target language proxy classes. (In case of Java
- "static" nested classes.) Only public nested classes are wrapped. Otherwise there is little difference between nested and normal classes.

If the target language doesn't support nested classes directly, or the support is not implemented in the language module (like for python currently), then the visible
nested classes are moved to the same name space as the containing class (nesting hierarchy is "flattened"). The same behaviour may be turned on for C# and Java
by the %feature ("flatnested"); If there is a class with the same name in the outer namespace the inner class (or the global one) may be renamed or ignored:

%rename (Bar Foo) Bar::Foo;
class Foo {};
class Bar {
public:
class Foo {};
}i

If a nested class, within an outer class, has to be used as a template parameter within the outer class, then the template will have to be instantiated with
%template before the beginning of the outer class. An example can be found in the Templates section.

Compatibility Note: Prior to SWIG-3.0.0, there was limited nested class support. Nested classes were treated as opaque pointers. However, there was a
workaround for nested class support in these older versions requiring the user to replicate the nested class in the global scope, adding in a typedef for the nested
class in the global scope and using the "nestedworkaround" feature on the nested class. This resulted in approximately the same behaviour as the "flatnested"
feature. With proper nested class support now available in SWIG-3.0.0, this feature has been deprecated and no longer works requiring code changes. If you see
the following warning:

example.i:8: Warning 126: The nestedworkaround feature is deprecated

consider using the "flatnested" feature discussed above which generates a non-nested proxy class, like the "nestedworkaround" feature did. Alternatively, use the
default nested class code generation, which may generate an equivalent to a nested proxy class in the target language, depending on the target language support.

6.27 Nested classes

SWIG-3.0 Documentation

SWIG-1.3.40 and earlier versions did not have the nestedworkaround feature and the generated code resulting from parsing nested classes did not always
compile. Nested class warnings could also not be suppressed using %warnfilter.

6.28 A brief rant about const-correctness

A common issue when working with C++ programs is dealing with all possible ways in which the const qualifier (or lack thereof) will break your program, all
programs linked against your program, and all programs linked against those programs.

Although SWIG knows how to correctly deal with const in its internal type system and it knows how to generate wrappers that are free of const-related
warnings, SWIG does not make any attempt to preserve const-correctness in the target language. Thus, it is possible to pass const qualified objects to non-const
methods and functions. For example, consider the following code in C++:

const Object * fool();
void bar (Object *);

// C++ code
void blah() {

bar (foo()); // Error: bar discards const
}i

Now, consider the behavior when wrapped into a Python module:

>>> bar (foo()) # Okay
>>>

Although this is clearly a violation of the C++ type-system, fixing the problem doesn't seem to be worth the added implementation complexity that would be
required to support it in the SWIG run-time type system. There are no plans to change this in future releases (although we'll never rule anything out entirely).

The bottom line is that this particular issue does not appear to be a problem for most SWIG projects. Of course, you might want to consider using another tool if
maintaining constness is the most important part of your project.

6.29 Where to go for more information

If you're wrapping serious C++ code, you might want to pick up a copy of "The Annotated C++ Reference Manual" by Ellis and Stroustrup. This is the reference
document we use to guide a lot of SWIG's C++ support.

7 SWIG and C++11

e Introduction
e Core language changes
Rvalue reference and move semantics
Generalized constant expressions
Extern template
Initializer lists
Uniform initialization
Type inference
Range-based for-loop
Lambda functions and expressions
Alternate function syntax
Object construction improvement
Explicit overrides and final
Null pointer constant
Strongly typed enumerations
Double angle brackets
Explicit conversion operators
Alias templates
Unrestricted unions
Variadic templates
New string literals
User-defined literals
Thread-local storage
Explicitly defaulted functions and deleted functions
Type long long int
Static assertions
Allow sizeof to work on members of classes without an explicit object
Exception specifications and noexcept
Control and query object alignment
Attributes
e Standard library changes
o Threading facilities

0O 0O 0O 0O 0O OO 0OOOOO O OOO O OO 0 O 0O 0 o o o o o

6.28 A brief rant about const-correctness

SWIG-3.0 Documentation

Tuple types

Hash tables

Regular expressions

General-purpose smart pointers

Extensible random number facility

Wrapper reference

Polymorphous wrappers for function objects

Type traits for metaprogramming

Uniform method for computing return type of function objects

0 0 0 0 0o 0O 0 0 o

7.1 Introduction

This chapter gives you a brief overview about the SWIG implementation of the C++11 standard. This part of SWIG is still a work in progress.

SWIG supports the new C++ syntax changes with some minor limitations in some areas such as decltype expressions and variadic templates. Wrappers for the
new STL types (unordered containers, result_of, tuples) are incomplete. The wrappers for the new containers would work much like the C++03 containers and
users are welcome to help by adapting the existing container interface files and submitting them as a patch for inclusion in future versions of SWIG.

7.2 Core language changes

7.2.1 Rvalue reference and move semantics

SWIG correctly parses the rvalue reference syntax '&&', for example the typical usage of it in the move constructor and move assignment operator below:

class MyClass {

std::vector<int> numbers;
public:
MyClass (MyClass &&other) : numbers(std::move (other.numbers)) ({}
MyClass & operator=(MyClass &&other) {
numbers = std::move (other.numbers);
return *this;
}
}i

Rvalue references are designed for C++ temporaries and so are not very useful when used from non-C++ target languages. Generally you would just ignore them
via $ignore before parsing the class. For example, ignore the move constructor:

%$ignore MyClass::MyClass (MyClass &&);

The plan is to ignore move constructors by default in a future version of SWIG. Note that both normal assignment operators as well as move assignment operators
are ignored by default in most target languages with the following warning:

example.i:18: Warning 503: Can't wrap 'operator =' unless renamed to a valid identifier.

7.2.2 Generalized constant expressions

SWIG parses and identifies the keyword constexpr, but cannot fully utilise it. These C++ compile time constants are usable as runtime constants from the
target languages. Below shows example usage for assigning a C++ compile time constant from a compile time constant function:

constexpr int XXX () { return 10; }
constexpr int YYY = XXX () + 100;

When either of these is used from a target language, a runtime call is made to obtain the underlying constant.
7.2.3 Extern template

SWIG correctly parses the keywords extern template. However, this template instantiation suppression in a translation unit has no relevance outside of the
C++ compiler and so is not used by SWIG. SWIG only uses $template for instantiating and wrapping templates.

template class std::vector<int>; // C++03 explicit instantiation in C++
extern template class std::vector<int>; // C++11 explicit instantiation suppression in C++
%template (VectorInt) std::vector<int>; // SWIG instantiation

7.2.4 Initializer lists

Initializer lists are very much a C++ compiler construct and are not very accessible from wrappers as they are intended for compile time initialization of classes

7.1 Introduction

104

SWIG-3.0 Documentation

using the special std: :initializer list type. SWIG detects usage of initializer lists and will emit a special informative warning each time one is used:

example.i:33: Warning 476: Initialization using std::initializer list.

Initializer lists usually appear in constructors but can appear in any function or method. They often appear in constructors which are overloaded with alternative
approaches to initializing a class, such as the std container's push_back method for adding elements to a container. The recommended approach then is to simply

ignore the initializer-list constructor, for example:

%ignore Container::Container(std::initializer list<int>);
class Container {

public:
Container (std::initializer list<int>); // initializer-list constructor

Container();
void push back(const int &);

}i

Alternatively you could modify the class and add another constructor for initialization by some other means, for example by a std: : vector:

%include <std vector.i>

class Container {

public:

Container (const std::vector<int> &);

Container (std::initializer list<int>); // initializer-list constructor
Container();

void push back(const int &);

}i

And then call this constructor from your target language, for example, in Python, the following will call the constructor taking the std: : vector:

>>> ¢ = Container([1,2,3,4])

If you are unable to modify the class being wrapped, consider ignoring the initializer-list constructor and using %extend to add in an alternative constructor:

%include <std vector.i>
%$extend Container {
Container (const std::vector<int> &elements) {
Container *c = new Container();
for (int element : elements)
c->push_back (element) ;
return c;

%ignore Container::Container(std::initializer list<int>);

class Container {

public:
Container (std::initializer list<int>); // initializer-list constructor

Container();
void push back(const int &);

}i

The above makes the wrappers look is as if the class had been declared as follows:

%include <std vector.i>

class Container {

public:
Container (const std::vector<int> &);

// Container(std::initializer list<int>); // initializer-list constructor (ignored)
Container();
void push back(const int &);

}i

std::initializer listissimply a container that can only be initialized at compile time. As it is just a C++ type, it is possible to write typemaps for a
target language container to map onto std: :initializer list.However, this can only be done for a fixed number of elements as initializer lists are not

7.1 Introduction

SWIG-3.0 Documentation

designed to be constructed with a variable number of arguments at runtime. The example below is a very simple approach which ignores any parameters passed in

and merely initializes with a fixed list of fixed integer values chosen at compile time:

std::initializer list<int> {
20, 30, 40, 50};

Stypemap (in)
$1 = {10,
}
class Container {
public:
Container(std::initializer list<int>);
Container () ;
void push back(const int &);

// initializer-list constructor

}i

Any attempt at passing in values from the target language will be ignored and be replaced by {10, 20, 30, 40,

50} . Needless to say, this approach is very

limited, but could be improved upon, but only slightly. A typemap could be written to map a fixed number of elements on to the std: :initializer list,

but with values decided at runtime. The typemaps would be target language specific.

Note that the default typemap for std: :initializer 1list does nothing but issue the warning and hence any user supplied typemaps will override it and

suppress the warning.
7.2.5 Uniform initialization

The curly brackets {} for member initialization are fully supported by SWIG:

struct BasicStruct {
int x;

double y;

}i

struct AltStruct {

AltStruct (int x, double vy) x {x}, y {y} {}
int x ;
double y ;

}i

BasicStruct varl{5, 3.2};
AltStruct var2{2, 4.3};

// only fills the struct components
// calls the constructor

Uniform initialization does not affect usage from the target language, for example in Python:

>>> a = AltStruct (10,
>>> a.x

10

>>> a.y

142.15

142.15)

7.2.6 Type inference

SWIG supports decltype () with some limitations. Single variables are allowed, however, expressions are not supported yet. For example, the following code

will work:

int 1;
decltype (i) J;

However, using an expression inside the decltype results in syntax error:

int i; int j;

decltype (i+j) k; // syntax error

7.2.7 Range-based for-loop
This feature is part of the implementation block only. SWIG ignores it.
7.2.8 Lambda functions and expressions

SWIG correctly parses most of the Lambda functions syntax. For example:

7.1 Introduction

106

SWIG-3.0 Documentation

auto val = [] { return something; };
auto sum = [] (int x, int y) { return x+y; };
auto sum = [] (int x, int y) -> int { return x+y; };

The lambda functions are removed from the wrappers for now, because of the lack of support for closures (scope of the lambda functions) in the target languages.

Lambda functions used to create variables can also be parsed, but due to limited support of auto when the type is deduced from the expression, the variables are
simply ignored.

auto six = [](int x, int y) { return x+y; } (4, 2);

Better support should be available in a later release.
7.2.9 Alternate function syntax

SWIG fully supports the new definition of functions. For example:

struct SomeStruct {
int FuncName (int x, int y);

}i

can now be written as in C++11:

struct SomeStruct {
auto FuncName (int x, int y) -> int;
}i

auto SomeStruct::FuncName (int x, int y) -> int {
return x + y;

The usage in the target languages remains the same, for example in Python:

>>> a = SomeStruct ()
>>> a.FuncName (10, 5)
15

SWIG will also deal with type inference for the return type, as per the limitations described earlier. For example:

auto square (float a, float b) -> decltype(a);

7.2.10 Object construction improvement

There are three parts to object construction improvement. The first improvement is constructor delegation such as the following:

class A {
public:
int a;

)+ A(10) {}

int aa) : A(aa, 20) {}

int aa, int bb) : A(aa, bb, 30) {}

int aa, int bb, int cc) { a=aa; b=bb; c=cc; }
}i

where peer constructors can be called. SWIG handles this without any issue.

The second improvement is constructor inheritance via a using declaration. This is parsed correctly, but the additional constructors are not currently added to
the derived proxy class in the target language. An example is shown below:

class BaseClass {
public:

BaseClass (int iValue);
}i

7.1 Introduction

SWIG-3.0 Documentation

class DerivedClass: public BaseClass {

public:

using BaseClass::BaseClass; // Adds DerivedClass(int) constructor
}i

The final part is member initialization at the site of the declaration. This kind of initialization is handled by SWIG.

class SomeClass {
public:
SomeClass () {}
explicit SomeClass(int new value) : value(new value) {}

int value = 5;

}i

7.2.11 Explicit overrides and final

The special identifiers final and override can be used on methods and destructors, such as in the following example:

struct BaseStruct {
virtual void ab() const = 0;
virtual void cd();
virtual void ef();
virtual ~BaseStruct();
}i
struct DerivedStruct : BaseStruct {

virtual void ab() const override;
virtual void cd() final;
virtual void ef () final override;

virtual ~DerivedStruct () override;

}i

7.2.12 Null pointer constant
The nullptr constant is mostly unimportant in wrappers. In the few places it has an effect, it is treated like NULL.
7.2.13 Strongly typed enumerations

SWIG supports strongly typed enumerations and parses the new enum class syntax and forward declarator for the enums, such as:

enum class MyEnum : unsigned int;

Strongly typed enums are often used to avoid name clashes such as the following:

struct Color {
enum class RainbowColors : unsigned int {
Red, Orange, Yellow, Green, Blue, Indigo, Violet
}i

enum class WarmColors {
Yellow, Orange, Red
}i

// Note normal enum
enum PrimeColors {
Red=100, Green, Blue
}i
}i

There are various ways that the target languages handle enums, so it is not possible to precisely state how they are handled in this section. However, generally,
most scripting languages mangle in the strongly typed enumeration's class name, but do not use any additional mangling for normal enumerations. For example, in
Python, the following code

print Color.RainbowColors Red, Color.WarmColors Red, Color.Red

results in

0 2 100

7.1 Introduction

SWIG-3.0 Documentation

The strongly typed languages often wrap normal enums into an enum class and so treat normal enums and strongly typed enums the same. The equivalent in Java

18:

System.out.println (Color.RainbowColors.Red.swigValue() + " " + Color.WarmColors.Red.swigValue ()

4e

"

7.2.14 Double angle brackets

SWIG correctly parses the symbols >> as closing the template block, if found inside it at the top level, or as the right shift operator >> otherwise.

std::vector<std::vector<int>> myIntTable;

7.2.15 Explicit conversion operators

SWIG correctly parses the keyword explicit for operators in addition to constructors now. For example:

class U {
public:
int u;

}i

class V {
public:
int v;

}i

class TestClass {

public:
//implicit converting constructor
TestClass (U const &val) { t=val.u; }

// explicit constructor
explicit TestClass(V const &val) { t=val.v; }

int t;
}i

struct Testable {
// explicit conversion operator
explicit operator bool() const {
return false;
}
}i

+ Color

The effect of explicit constructors and operators has little relevance for the proxy classes as target languages don't have the same concepts of implicit conversions

as C++. Conversion operators either with or without explicit need renaming to a valid identifier name in order to make them available as a normal proxy

method.
7.2.16 Alias templates

The following is an example of an alias template:

template< typename T1l, typename T2, int >
class SomeType {
public:
Tl a;
T2 b;
int c;
}i

template< typename T2 >
using TypedefName = SomeType<char*, T2, 5>;

These are partially supported as SWIG will parse these and identify them, however, they are ignored as they are not added to the type system. A warning such as

the following is issued:

example.i:13: Warning 342: The 'using' keyword in template aliasing is not fully supported yet.

Similarly for non-template type aliasing:

7.1 Introduction

109

SWIG-3.0 Documentation

using PFD = void (*) (double); // New introduced syntax

A warning will be issued:

example.i:17: Warning 341: The 'using' keyword in type aliasing is not fully supported yet.

The equivalent old style typedefs can be used as a workaround:

typedef void (*PFD) (double); // The old style

7.2.17 Unrestricted unions

SWIG fully supports any type inside a union even if it does not define a trivial constructor. For example, the wrapper for the following code correctly provides
access to all members in the union:

struct point {
point () {}
point (int x, int y) : x (x), y_(y) {}
int X , vV i

}i

#include <new> // For placement 'new' in the constructor below
union P {

int z;

double w;

point p; // Illegal in C++03; legal in C++11.

// Due to the point member, a constructor definition is required.

PO f

new (&p) point();

}

}opl;

7.2.18 Variadic templates

SWIG supports the variadic templates syntax (inside the <> block, variadic class inheritance and variadic constructor and initializers) with some limitations. The
following code is correctly parsed:

template <typename... BaseClasses> class ClassName : public BaseClasses... {
public:
ClassName (BaseClasses &&... baseClasses) : BaseClasses(baseClasses)... {}

For now however, the $template directive only accepts one parameter substitution for the variable template parameters.

Stemplate (MyVariantl) ClassName<> // zero argument not supported yet
Stemplate (MyVariant2) ClassName<int> // ok

Stemplate (MyVariant3) ClassName<int, int> // too many arguments not supported yet

Support for the variadic sizeof () function is correctly parsed:

const int SIZE = sizeof...(ClassName<int, int>);

In the above example SIZE is of course wrapped as a constant.
7.2.19 New string literals

SWIG supports wide string and Unicode string constants and raw string literals.

// New string literals

wstring aa = L"Wide string";

const char *bb = u8"UTF-8 string";
const charlé t *cc = u"UTF-16 string";
const char32 t *dd = U"UTF-32 string";

// Raw string literals
const char *Rx = ")I'm an \"ascii\"™ \\ string.";
const char *ee = R"XXX () I'm an "ascii™ \ string.)XXX"; // same as xx

7.1 Introduction

SWIG-3.0 Documentation

wstring ff = LR"XXX(I'm a "raw wide" \ string.)XXX";

const char *gg = uBR"XXX(I'm a "raw UTF-8" \ string.)XXX";
const charl6é t *hh = uR"XXX(I'm a "raw UTF-16" \ string.)XXX";
const char32 t *ii = UR"XXX(I'm a "raw UTF-32" \ string.)XXX";

Non-ASCII string support varies quite a bit among the various target languages though.

Note: There is a bug currently where SWIG's preprocessor incorrectly parses an odd number of double quotes inside raw string literals.
7.2.20 User-defined literals

SWIG parses the declaration of user-defined literals, that is, the operator "" mysuffix () function syntax.

Some examples are the raw literal:

OutputType operator "" myRawLiteral (const char * value);

numeric cooked literals:

OutputType operator "" mySuffixIntegral (unsigned long long);
OutputType operator "" mySuffixFloat (long double);

and cooked string literals:

OutputType operator "" mySuffix(const char * string values, size t num chars);

OutputType operator "" mySuffix(const wchar t * string values, size t num chars);
OutputType operator "" mySuffix(const charlé t * string values, size t num chars);
OutputType operator "" mySuffix(const char32 t * string values, size t num chars);

Like other operators that SWIG parses, a warning is given about renaming the operator in order for it to be wrapped:

example.i:27: Warning 503: Can't wrap 'operator "" myRawLiteral' unless renamed to a valid identifier.

If %rename is used, then it can be called like any other wrapped method. Currently you need to specify the full declaration including parameters for %rename:

$rename (MyRawLiteral) operator"" myRawLiteral (const char * value);

Or if you just wish to ignore it altogether:

%ignore operator "" myRawLiteral (const char * value);

Note that use of user-defined literals such as the following still give a syntax error:

OutputType varl = "1234" suffix;
OutputType var2 = 1234 suffix;
OutputType var3 = 3.1416 suffix;

7.2.21 Thread-local storage

SWIG correctly parses the thread local keyword. For example, variables reachable by the current thread can be defined as:

struct A {

static thread local int val;
}i
thread local int global val;

The use of the thread local storage specifier does not affect the wrapping process; it does not modify the wrapper code compared to when it is not specified.
A variable will be thread local if accessed from different threads from the target language in the same way that it will be thread local if accessed from C++ code.

7.2.22 Explicitly defaulted functions and deleted functions

SWIG handles explicitly defaulted functions, that is, = default added to a function declaration. Deleted definitions, which are also called deleted functions,
have = delete added to the function declaration. For example:

7.1 Introduction 1M1

SWIG-3.0 Documentation

struct NonCopyable {

NonCopyable & operator=(const NonCopyable &) = delete; /* Removes operator= */
NonCopyable (const NonCopyable &) = delete; /* Removes copy constructor */
NonCopyable () = default; /* Explicitly allows the empty constructor *

}i

Wrappers for deleted functions will not be available in the target language. Wrappers for defaulted functions will of course be available in the target language.
Explicitly defaulted functions have no direct effect for SWIG wrapping as the declaration is handled much like any other method declaration parsed by SWIG.

Deleted functions are also designed to prevent implicit conversions when calling the function. For example, the C++ compiler will not compile any code which
attempts to use an int as the type of the parameter passed to £ below:

struct NoInt {
void f(double 1i);
void f(int) = delete;
}i

This is a C++ compile time check and SWIG does not make any attempt to detect if the target language is using an int instead of a double though, so in this case it
is entirely possible to pass an int instead of a double to £ from Java, Python etc.

7.2.23 Type long long int
SWIG correctly parses and uses the new long long type already introduced in C99 some time ago.
7.2.24 Static assertions

SWIG correctly parses the new static assert declarations. This is a C++ compile time directive so there isn't anything useful that SWIG can do with it.

template <typename T>
struct Check {

static assert(sizeof (int) <= sizeof(T), "not big enough");
}i

7.2.25 Allow sizeof to work on members of classes without an explicit object

SWIG can parse the new sizeof() on types as well as on objects. For example:

struct A {
int member;

}i

const int SIZE = sizeof (A::member); // does not work with C++03. Okay with C++11

In Python:

>>> SIZE
8

7.2.26 Exception specifications and noexcept

C++11 added in the noexcept specification to exception specifications to indicate that a function simply may or may not throw an exception, without actually
naming any exception. SWIG understands these, although there isn't any useful way that this information can be taken advantage of by target languages, so it is as
good as ignored during the wrapping process. Below are some examples of noexcept in function declarations:

static void noexl () noexcept;
int noex2 (int) noexcept (true);
int noex3(int, bool) noexcept (false);

7.2.27 Control and query object alignment

An alignof operator is used mostly within C++ to return alignment in number of bytes, but could be used to initialize a variable as shown below. The variable's
value will be available for access by the target language as any other variable's compile time initialised value.

const int alignl = alignof (A::member);

The alignas specifier for variable alignment is not yet supported. Example usage:

7.1 Introduction

SWIG-3.0 Documentation

struct alignas(16) S {
int num;
}i
alignas (double) unsigned char c[size