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High-level Synthesis

Translating a program to hardware.
I Reduce dependence on hardware design skills

I Programs specify the behaviour of the circuit.
I “Even programmers” can create hardware.

I Simplify verification
I Generated RTL is correct by construction.
I Verify the program instead of the generated RTL.

I Faster design flow.
I Design large systems within manageable design costs.
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A competitive high-level synthesis flow
I Independent of the input programming language.
I Produce hardware that is provably correct.
I Produce efficient hardware.
I Scale to very large systems.
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Problem
Translating behaviour to structure.

I The input is an algorithm.
I The output is a hardware description.

Solution
Introduce an intermediate representation.

I Hides low-level details.
I Target for compiling the high-level program.

I Exposes information relevant to synthesis.
I A structure that implements the behaviour.
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Control Data Flow Graph (CDFG)

I Traditionally used as an IR for high-level synthesis.
I Control and data are expressed in a single graph.

Decoupled control and data.

I Separately implement the two components.
I Scalable to large programs.

I Separation of resource from computation.
I New optimisations that work across modules.
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AHIR: A Hardware Intermediate Representation

I Orthogonal factorisation of the program
I Control × Data × Storage

I Special petri-net class that supports scalable analysis.
I Request–Acknowledge handshakes.

I One-sided delay constraints.
I Independent memory subsystem.
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High-level Synthesis with AHIR

I CDFG as an intermediate step.
I The generated AHIR is equivalent to the input CDFG.

I Supports scalable optimisation.
I Arbiterless sharing.

I Routine translation to hardware circuits.
I Demonstrated on a diverse set of applications.
I Competitive with embedded processors.
I Potentially get very close to hand-crafted circuits.
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Outline

AHIR

Compiler Flow

Arbiterless Sharing

Implementation and Results
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An AHIR Module
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An AHIR system

Call-graph Modules
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Handshakes
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Timing constraints

d5 ≤ d0 + d1 + d3

d2 ≤ d3 + d4 + d0
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Control-path as a petri-net

I A general petri-net can be arbitrarily complex.
I We need a subclass that is:

I live and safe
I easy to analyse
I not restrictive

I Type-2 petri-net
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Type-2 petri-nets

Token Preserving Region: a connected
subgraph of a petri-net:

I Has a unique entry and a unique exit.
I No place marked in the initial marking.
I Connecting a marked place results in a

live and safe petri-net.

Type-1 Petri-net: Created from a TPR.
Type-2 Petri-net: A subset where the TPR is constructed using
specific rules.
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Type-2 production rules

Primitive Series Forks Branches

Parallel merges
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Type-2 construction
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Compiler flow
Static Single Assignment (SSA)

d = m + n;
b = m - n;
if (b > 0) {
a = b + c;
d = e + a;

}
x = d + 2;

Sample program in C

A1 = m1 + n1;
S1 = m1 - n1;
C1: if (S1 > 0) {
A2 = S1 + c1;
A3 = e1 + A2;

}
M = φ(A1, A3);
A4 = M + 2;

SSA form

17 of 47



Compiler flow
Control Data Flow Graphs (CDFG)

A1 = m1 + n1;
S1 = m1 - n1;
C1: if (S1 > 0) {
A2 = S1 + c1;
A3 = e1 + A2;

}
M = φ(A1, A3);
A4 = M + 2;

SSA form Control Data Flow Graph
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Control-path and data-path in AHIR

CDFG Control Path Data Path
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Construction

G −→ A
Each element in G is replaced with an equivalent AHIR
fragment in A.

Multiplexer node AHIR fragment
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Construction

G −→ A
Each element in G is replaced with an equivalent AHIR
fragment in A.

A is equivalent to G
For an initial state X

SG(X ): Possible sequences of operations in G.
SA(X ): Possible sequences of operations in A.

One-to-one correspondence between sets SG(X ) and SA(X ).
I No loss of information when translating a CDFG to AHIR.
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Equivalence

Fragments in A correctly implement the elements in G.

Sequences in A are included in the sequences in G.
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Equivalence

Elements in G′ correctly implement fragments in A.

Sequences in G′ are included in the sequences in A.
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Equivalence

G′ is isomorphic to G.

A is equivalent to G.
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Reconstruction using labels

Multiplexer AHIR fragment

Labelled −→ Labelled −→ Labelled
CDFG G AHIR spec A CDFG G′
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Reconstruction using labels

Multiplexer AHIR fragment

Labelled −→ Labelled −→ Labelled
CDFG G AHIR spec A CDFG G′
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Arbiterless sharing
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Compatible operations
Two operations are compatible if they do not overlap in time.

I Compatibility in terms of paths in a Type-2 petri-net.
I A labelling scheme to determine compatibility.
I An efficient graphical representation for labels.
I A linear-time algorithm to check for compatible labels.
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Compatible operations

Control Path Data Path
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Compatibility in a Type-2 Petri-net

Two elements e1 and e2 in a Type-2 petri-net are compatible if
and only if one of the following is true:

I The smallest region R that contains both of them is not a
fork region.

I R is a fork region, but there is a path in R that passes
through regions both e1 and e2.
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Labelling scheme

I Symbolic execution of the petri-net.
I Trace the influence of forks and joins.
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Labels at a fork
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Labels at a fork
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Labels at a join
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Labels

I A label is a set of sequences of label elements.
I A label element is a 3-tuple:

(
f , k(f ), i

)
f : fork identifier

k(f ) : fan-out of the fork f
i : index into the fan-out of the fork
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Label Operations
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Compatibility of labels
Two operations in a Type-2 petri-net, with labels L1 and L2
respectively, are compatible if and only if the labels L1 and L2
are compatible.

33 of 47



Complexity

I The size of a compatibility label is exponential.
I Comparison of two labels is expensive.

The Label Representation Graph (LRG)

I Nodes represent labels.
I Edges represent the construction of labels.
I The number of nodes is less than the number of elements

in the Type-2 petri-nets.
I A linear-time algorithm to determine compatibility.
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LRG Construction

Labelled edges at a fork
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LRG Construction

Unlabelled edges at a join
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LRG Construction

Reduction at a join
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An example LRG
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Compatibility using the LRG
Two labels L1 and L2 are compatible if and only if the
corresponding nodes u and v in the LRG are compatible.

Complexity

I The number of nodes in the LRG is much less than the
number of operations in the control-path.

I DFS-based algorithm to check a pair of nodes in the LRG.
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Current Implementation

A complete flow from C to synthesisable VHDL using LLVM.
I 32-bit integers, single precision floats.
I Pointers, structures, arrays.
I Fixed number of arguments in function calls.
I Dynamic memory allocation.

Conceivable, but not implemented:
I Recursion.
I Function pointers.
I I/O ports.
I Variable number of arguments in function calls.
I Dynamically loaded libraries.
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Synthesisable VHDL

I Clocked implementation using a predefined library.
I Asynchronous control-path and link-layer.
I Synchronous data-path operators

I All operations take one clock cycle.
I Separate memory subsystem

I Multiple load/store ports.
I Unspecified number of clock cycles.
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Examples used

I A5/1 stream cipher∗

I AES block cipher∗

I FFT
I Linpack
I Red-Black Trees

The same source code was run on a processor, and also
synthesised to hardware.

∗Based on work done by Prakalp Somawanshi, 2008 41 of 47



Arbiterless sharing
FPGA implementation (Xilinx Virtex II)

Performance / Area (Hz per slice)

Example Gain (%)
A5/1 15
AES 126
FFT 97
RBT 191
LPK 36
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Throughput / Area
FPGA implementation (Xilinx Virtex II)

Comparison with Pentium IV and hand-crafted RTL
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Throughput / Area
Comparison with processors
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Energy
ASIC v/s Intel Atom N270
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Conclusion

Established a high-level synthesis flow.
1. Supports a large class of programming languages.
2. Eliminates verification

I Generated circuits are correct by construction.
3. Supports scalable optimisations.

I Orthogonal factoring into control, data and storage.
I Static analysis that exploits the structure of the petri-net.

4. Compares favourably with embedded processors.
I Throughput / Area
I Energy
I Energy × Delay
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Future work
Getting close to hand-crafted hardware.

I Efficient hardware
I Better operators
I Hardware reuse

I Routing overheads
I Sharing registers

I System-level parallelisation and pipe-lining
I Support for “better” languages

I System-C
I Esterel
I Functional programming languages

I Customised memory subsystem
I Relation between ports, banks and addresses
I Memory access information available in the software phase.
I Analyse traces for run-time access patterns
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Thank You.



Compatibility and labels

A simple fork

x ∈ L
x .(f ,2,0) ∈ L1
x .(f ,2,1) ∈ L2



Compatibility and labels

Two forks in series

x ∈ L
x .(f ,2,0) ∈ L1
x .(g,2,0) ∈ L2



Compatibility and labels

Overlapped forks

x ∈ L
x .(f ,2,0) ∈ L1
x .(f ,2,1), ∈ L2

x .(f ,2,0).(g,2,1)



Compatible Labels

Definition: Two labels L1 and L2 are compatible if and only if
there exist sequences l1 ∈ L1 and l2 ∈ L2 where one of the
following is true:

1. l1 and l2 are equal.
2. One of them is a prefix of the other.

I x .(f ,2,0) and x .(f ,2,0).(g,2,1)

3. The elements that occur in them just after the longest
common prefix disagree on the forks.

I x .(f ,2,0).(h,2,1) and x .(f ,2,0).(g,2,1)



Examples

Compatible pairs:
1. I (f ,2,0)

I (f ,2,0)

2. I (f ,2,0)
I (f ,2,0).(g,2,1)

3. I (f ,2,0).(h,2,1)
I (f ,2,0).(g,2,1)

Incompatible pairs:
1. I (f ,2,0)

I (f ,2,1)

2. I (f ,2,0)
I (f ,2,1).(g,2,1)

3. I (f ,2,0).(g,2,0)
I (f ,2,0).(g,2,1)



BACK



Compatibility using the LRG

Definition: Two nodes u and v in the Label Representation
Graph are compatible if and only if one of the following is true:

1. There is a path between u and v .
2. They are reachable from a common ancestor a in the LRG

along paths such that one of the following is true:
2.1 One or both paths begin with an unlabelled edge.
2.2 The labels on the first edges in the paths indicate different

forks.



Compatibility cover
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AHIR v/s Atom

Area Freq Delay Power Energy
E×D

(mm2) (MHz) (ms) (mW) (µJ)
A5/1-Atom 25 1600 0.12µs 2500 298.44 nJ 35.63
A5/1-AHIR 0.10 285 0.07µs 9.22 0.61 nJ 0.04
AES-Atom 25 1600 0.036 2500 89.362 3.194
AES-AHIR 0.41 285 0.107 37.56 4.023 0.431
FFT-Atom 25 1600 0.022 2500 55.64 1.238
FFT-AHIR 0.32 180 0.035 13.11 0.464 0.016
LPK-Atom 25 1600 7.90 2500 19740 155875
LPK-AHIR 1.69 165 9.42 30.33 285 2691
RBT-Atom 25 1600 0.36 2500 891.89 318.19
RBT-AHIR 1.13 165 2.47 17.00 42.01 103.80
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