Inner loop optimizations in mapping single-threaded
programs to hardware

Madhav P. Desai
Department of Electrical Engineering
IIT Bombay, Mumbai, India
madhav@ee.iith.ac.in

Abstract—In the context of mapping high-level algorithms reported by [8], loop optimizations are done in a manner
to hardware, we consider the basic problem of generating an analogous to the static techniques used in software corapile
efficient hardware implementation of a single threaded program, , \yhich index expressions which depend on the induction
in particular, that of an inner loop. We describe a control-flow - . . .
mechanism which provides dynamic loop-pipelining capability in varlabl_e are analys_ed t‘? identify dependencies and sod_ﬂe_dul
hardware, so that multiple iterations of an arbitrary inner loop ~ Operations across iterations of the loop body. An expjicitl
can be made simultaneously active in the generated hardware, timed controller is synthesized for the pipeline. Another a

We study the impact of this loop-pipelining scheme in conjunction proach which works in a similar manner is described in [9].
with source-level loop-unrolling. In particular, we apply this These approaches rely on a static analysis of the loop, &d th

technique to some common loop kernels: regular kernels such . . .
as the fast-fourier transform and matrix multiplication, as well cases to which the approach can be applied are restrictéd (bu

as an example of an inner loop whose body has branching. are still sufficiently general for most linear algebra angitai

The resulting resulting hardware descriptions are synthesized signal processing kernels).

to an FPGA tal’get, and then characterized for performance |n our approach, the hardware model |S abstracted as a
Iand resource utilization. We observe that the use of dynamic .) circuit which consists of a data-path (a graph of op-
oop-pipelining mechanism alone typically results in a significant .) . .
improvements in the performance of the hardware. If the loop is ©rations interconnected by wires) and a control-path wkdch
statically unrolled and if loop-pipelining is applied to the unrolled Modeled as a Petri-net. The operations in the data-pathoare n
program, then the performance improvement is still substantial. tightly scheduled, with dependencies being taken care tidy
When dynam|c |00p plpellnlng is used in Conjunction with static Control Pet”_net (for example Operandﬁ can start Only after

loop unrolling, the improvement in performance ranges from : - : .
6X to 20X (in terms of number of clock cycles needed for the operationsY, Z have finished etc.). This representation allows

computation) across the loop kernels that we have studied. These (N implementation of loop pipelining by a simple modificati
optimizations do have a hardware overhead, but, in spite of this, t0 the control Petri-netvithout altering the data-path. It is
we observe that the joint use of these loop optimizations not only possible to pipeline any loop, even those that do not have
improves performance, but also the performance/cost ratio of th explicit induction variables (such as while loops). We will
resulting hardware. describe this loop-pipelining mechanism in a later section
this paper.

The experimental results in this paper are based on the

We consider the problem of improving the performancgynamic loop-pipelining optimization applied by itself can
of hardware generated from single threaded programs; jiiconjunction with static loop-unrolling. By loop-unrisiy,
particular, the important problem of mapping loops to hargge mean astatic source-level or compile-time optimization
ware. It is well known that most compute intensive programgchnique in which an inner loop is unrolled by instantigtin
spend a large fraction of their time in inner loops. Thus, thaultiple copies of the loop-body while simultaneously redu

optimal implementation of such loops is of primary imporing the number of loop-iterations. For example:
tance, whether the target is a processor or hardware. Such

an improvement is essential if synthesized hardware is to ber (i =0; i < 8; i++) {
performance competitive with high performance proceseors X += a[i]*b[i];
with hand-crafted hardware.
In the context of compilation to a pipelined Processofy tansformed to
several loop optimizations have been considered in liteeat
such as loop-unrolling, loop-peeling, software-loopgiping for (i =0; i < 4; i+=2) {
etc. [6], [7], with the intent of these optimizations beirget int il=1i+1; int i2 =1i+2; int i3 =1i+3;
extraction of as much parallelism as possible from the singl x += a[i]*b[i];
threaded source program. x += a[il]=b[il];
Similar loop-optimization techniques have been explored x += a[i 2]*b[i2];
and reported in the literature related to reconfigurabla-har x += a[i 3] *b[i 3];
ware (for example [8], [9], [10]). For instance, in the work}

I. INTRODUCTION

This unrolling increases the size of the basic block (that is Our compiler starts with a C program and produces VHDL.
the maximal sequence of statements without any branchd=)r the C front-end, we use the clang-2.8 compiléFhis
and provides the possibility of extracting more parallali;m compiler is used to emit LLVM byte-code which is then
the loop. Note that this unrolling can be done manually by thensformed to VHDL using the following transformations:
programmer, or automatically by an optimizing compiler. 1) The LLVM byte-code is translated to an internal inter-
In the remainder of this paper, we will first briefly describe mediate format, which is itself a static-single assignment
the model of the hardware that is produced by our HLS com- centric control-flow language (naméd) which allows
piler and illustrate how this model can incorporate dynamic the description of parallelism using fork-join structures
run-time loop pipelining. The chief issues here are the hard as well as arbitrary branching [11].
ware overhead (area, energy, delay) incurred by the need t@) The Aa description is translated to a virtual circuit
provide this run-time support in the hardware generatedby t (the model is described in the next section). During
compiler, and the corresponding improvement in perforreanc this translation, the following major optimizations are
that results from this optimization. In the results preednn performed: declared storage objects are partitioned into
this paper, the unrolling has been done manually at the sourc disjoint memory spaces using pointer reference analysis,
code level. and dependency analysis is used to generate appropriate
In order to address this issue, we will present a set of ob- sequencing of operations in order to maximize the
servations from experiments performed on representativeri parallelism.
loops that occur in some important applications such as the3) The virtual circuit is then translated to VHDL. At

fast-fourier transform, the matrix product, vector dobghuct,

and a digital filtering algorithm. These observations répor

the hardware performance on four different loop-optimarat
choices: with no loop optimization, with static unrollintpae,
with dynamic loop pipelining alone, and with static unnogji

this point, decisions about operator sharing are taken.
Concurrency analysis is used to determine if a shared
hardware unit needs arbitration. Optimizations related
to clock-frequency maximization are also carried out
here. The generated VHDL uses a pre-designed library

of useful operators ranging from multiplexors, arbiters
to pipelined floating point arithmetic units.
The compiler flow has been characterized over a wide
variety of applications [4], [5].

combined with dynamic loop pipelining. Hardware resource

utilization and delays are computed by synthesizing and sim

ulating the generated hardware for an FPGA target.
The observations indicate the following:

o The performance improvement with loop-pipelining ap- 11l. M ODEL OF THE VIRTUAL CIRCUIT GENERATED BY
plied alone is in the 2X-8X range. This improvement is OUR COMPILER
observed both in the case of an inner loop whose bodyrhe yirtyal circuit generated by our compiler consists of
is a single basic block, as well as in the case when thgee cooperating components: the control-path, the piatta-
inner loop body has branches. and the storage system [4].

« The performance improvement with loop-unrolling alone 14 ilustrate the model, we consider a simple example.
is in the 2X range, and with aggressive unrolling (as was

tried in the matrix multiplication case), the improvement | 0at a[1024] , b[1024];
is as high as 10X. float dotp = 0.0;

« The combination of loop-pipelining and loop-unrollingf or (1 =0; i < 1024; i++)
leads to a performance improvement which is at leakt
as high as the product of the improvements due to the dotp += a[i]+*b[i];
individual optimizations. For matrix multiplication, hi }

improvement is as large as 20X. To compile this code, we use the clang-2.8 C compiler, which
« The hardware overheads for implementing these opfk sed to emit LLVM byte-code. The LLVM byte-code is
mizations are considerable, but the cost-to-performanggnsformed through a series of steps by our compiler taols t
ratio improves substantially in all cases. produce a virtual circuit, which is depicted in Figure 1. The
The results indicate that loop-unrolling combined with dyvirtual circuit in Figure 1 has three components, described
namic loop-pipelining can close the performance gap not&elow.

above. A. Data-path

The data-path is a directed hyper-graph with nodes being
operations and arcs being nets (shown as ovals). Each net
s at most one operation which drives it. Further, most
erations have a split protocol handshake with the control
th: two pairs of request/acknowledge associations*€ar/

Il. A NOTE ON OUR COMPILER FLOW

The dynamic pipelining mechanism described in this papg?l
is implemented in a compiler flow which takes a C prograr?lp
and produces an equivalent VHDL description. We give a briBf
description of this compiler flow. The details are not reféva 1yww.clang.org
to this paper, and the interested reader can find them in [4]. 2www.livm.org

entry 0 0.0
prl pro_ pri
pla poa
| ndotP

as lasr {
poa iasd iacr|_INCR Iasqﬂz LA ‘Tan'
iacq l laca - memory
lasr m
lasa msa @:MUL b L
lacr mea Ibsg =~

[Ibcf LB f—=
laca 1023— L loca |~ o bf]
1 csa——7F CMP memory
bnottaken Y msr cca~— L EQ

— msa
Y mcr
“FADD

— mca

btaken —— —1— asr

T asa btaken asr
' acr asa<
' aca bnottaken acr| -

al
Control Data—path
Petri-net

exit dotP

Fig. 1. Control-data-storage virtual circuit model.

for sampling the inputs and *cr/*ca for updating the outputsD deci sion COND?
The operation samples its inputs on receiving the sr request
symbol and acknowledges the completion of this action %fz:??::e'?:;i:e‘izighne c\j;\f’/‘:]a(;

" - n the data-path is implemented as
emitting the sa acknowledge symbol. After receiving the Hordware. multiole operations mav be manped to a sinale op-
symbol, the operation will update its output net using the ' p'e op Y PP g'e op

newlv comouted value. The sequencing is required to be erator depending on cost/performance tradeoffs. When ghis i
y P ' q 9 q done, multiplexing logic is introduced in the hardware. 3ée

path only shows the operations and

Sr ->sa ->cr -> ca decisions and manipulations are performed in the compiler
Note that an operation can be re-triggered while an earl%ﬁl\?ag’[‘mh is responsible for transforming the virtuatuir

edition of the operation is in progress (this is importarthi
operation is implemented in a pipelined operator). B. Storage subsystem

Some data-path opere_m_ons (such as the multiplexor ShownI'he load and store operations in the data-path are asabciate
on the top and the decision operation shown at the botto

left in Figure 1) follow a simpler protocol. The multiplexorWI h memory subsystems. In general, there can be multiple

: : ; isjoint memory subsystems inferred by our compiler. Irs thi
has a pair of requests and a single acknowledge, with tﬂgrticular case, the arrays a[] and b[] are mapped to disjoin

condition that at most one of the requests is received at) mories, due to which the two loads are allowed to proceed

time instant. The input corresponding to the request is then .)
. ; N parallel (the relaxed consistency model is enforced). In

sampled and stored in the output net of the multiplexor. The g :
rder to maintain the relaxed consistency model, the memory

decision operation has a single request and two acknowled%so)) . ;
. Iy -Subsystems are designed to use a time-stamping scheme which
Upon receipt of the request symbol, the decision operation

checks its input net and emits one of the two acknowledg yarantees first-come-first-served access to the same yiemor
. .) ocation.
depending on whether the input is zero/non-zero.

In Figure 1, the following data-path operations are instag, Control-path

tiated: The control-path in the virtual circuit encodes all the
m, nmdotP rmultiplexors for I, dotP. sequencing that is necessary for correct operation of the
I NCR i ncrenent for |++ assembly. The control-path (shown on the left in Figure 1)
LA load for a[l] is modeled as a Petri-net with a unique entry point and a
LB load for Db[I] unique exit point. The Petri-net is constructed using a set
FMUL multiply for p=a[l]*b[I] of production rules which guarantee liveness and safeness
FADD add for dotP += axb [4]. Transitions in the Petri-net are associated with outpu

CWP EQ conpare for COND=(1==1023) symbols to the data-path (these can be described by theregul

expressions *sr and *cr) and input symbols from the datél oat dotp = 0.0;

path (these are of the form *sa and *ca). The *sr symbotlotp += a[0] *b[0] ;
instruct an element in the data-path to sample its inputs atdt p += a[1] *b[1] ;

the *cr symbols instruct an element in the data-path to wdatot p += a[2] *b[2] ;

its outputs (all outputs of data-path elements are regidjer . . .

The *sa and *ca symbols are acknowledgements from the dadimt p += a[1023] *b[1023] ;

path which indicate that the corresponding requests haee b
served.
The following classes of dependencies are encoded in tﬁ?’
. . all't
control Petri-net:

fet A denote the: operation and leB denote thet- operation,
L, denote the loads from andb respectively. In principle,
he loads can occur simultaneously, and all the muégpli
) . can happen simultaneously once the loads complete. The adds
¢ Read—after-vynte (RAW): If the result of operator A iS4 need to be ordered because of the multiply-accumulate
used as an input to operator B, the sr symbol t0 B c}tyre of the code as it is written. Any ordering of these
be emitted only after the ca symbol from A has beeghaations which satisfies these dependencies will be terme

rec.elvetfjt. d i , h | a loop-consistent ordering.
Write-after-read (WAR): If B writes to a net whose value |, o, gynamic loop pipelining scheme, we use the follow-

needs to have been used by A earlier, for example asii}, o gering scheme. If A is an operation in the loop body,
a = (b+c) operation A reads c denote the:*" execution of A byA,. Since each operation has
c = (p*q) operation B wites to ¢ events sr, sa, cr, ca, we denote thesedpysr, Ay.sa, Ay.cr,
where there is a WAR dependency through c, then the di,.ca respectively. We impose the following dependency rules
request to B can be issued only after the sa acknowledge operations across loop iterations.

from A has been received. _ o Aj.sa — Apyq.sr for all operations A: that is, the next
Load-Store ordering: If P,Q are load/store operations 10 eyecution of A cannot start until the current execution
the same memory subsystem, and if at least one of P.Q a5 finished sampling the inputs.

is a store, and if P is supposed to happen before Q, then, Ap.ca — Agyr.cr for all operations A: that is, the

the sr request to Q must be emitted only after the sa
acknowledge from Q has been received. The memory
subsystem itself guarantees that requests finish in the,
same order that they were initiated. This takes care of
WAR, RAW and WAW memory dependencies.

The control-path in 1 shows the sequencing generated,
by these rules. Note that the data-path is not party to any
sequencing decisions (other than responding to the request
symbols).

completion of the next execution of A can be initiated
only after the current execution of A has completed.

If A— BisaRAW dependency, thaBy.sa — Ag.cr.
That is, until B has sampled the result of the current A,
the next completion of A cannot start.

If A— BisaWAR dependency, theBy.ca — Aj1q.57.
That is, the next A cannot start until the current B has
completed.

If P, Q are successive load/stores, with at least one of

IV. A CONTROL-FLOW MECHANISM FOR DYNAMIC
LOOP-PIPELINING

For the subsequent discussion, we assume that the inner |

which is being optimized consists of a single basic blockf th
is, there are no branching instructions in the loop body (n

jumps, if constructs, switch constructs etc.). If such tatss
are present, these are first eliminated using the mecharfis
guarded (that is, predicated) execution.

Suppose that we want to modify the control-path in order
to permit the second (and maybe third etc.) iteration of @loQ

to begin while the first iteration is still in progress. Catesi
the example of the dot product. The original loop was

float a[1024], b[1024];
float dotp = 0.0;
for(i=0; i < 1024;
{

}

The fully unrolled version of this loop would be
float a[1024], b[1024];

i ++)

dotp += a[i]*b[i];

them being a store, theQy.sa — Pry1.sr. That is, the
next P cannot start until the current Q has acknowledged
that it has started.

YR8 mechanism for incorporating RAW and WAR dependen-

c(i)es is illustrated in Figure 2 for RAW and WAR dependencies
within the loop body. The reverse dotted arc is a marked arc

ngt initially carries a single token).

% is easy to confirm that these additional dependencies
ensure that the loop execution subject to these dependdrcie
a loop-consistent ordering. The modified control path isxsho

in Figure 3. The loop-terminator element has three inputs: a
loop-taken transition, a loop-not-taken transition andap}t
body-exit transition. The loop-taken/not-taken pair gades
whether a new iteration is to be started or whether the loop
has terminated. The loop-body-exit transition indicakes the
body of the loop has finished executing an iteration. Thedoop
terminator initiates a new iteration as long as the number of
active iterations is within a specified limi#/ (usually, we
keep this limit todl = 8). Thus, all the places in the modified
control path in Figure 3 now must have a capacityMéfand

the cost of implementing each place in the control path goes
up by a factor oflog M. This is the major additional cost

v Asr

—3— Assa

T v Acr

—+—Aca

_ v Bsr
‘‘‘‘‘ —+— B.sa
_ v B.er

—+—B.ca

et At
—+—Asa

v Acr
_ ¢+ Aca

_ 1 Busr
—+— B.sa

_+ B.ecr
«~....—t+—B.ca

RAW WAR
B after A B after A

Fig. 2. Control-path mechanism for handling RAW, WAR deperuies for

loop-pipelining.

incurred by the pipelining mechanism.

bnottaken

loop-taken |loop
not
taken

btaken —— \\

entry

. 1 _msr

=t msa .~

e tomerT

—1— mca

—1— asr

s .asa

_v _acr T
—!_ aca

loop-body Control

Fig. 3. Modified control-path with loop-pipeline dependiescdotted lines).

exit Petri-net

Loop terminator

loop-exit

V. EXPERIMENTAL RESULTS

We considered four examples:

« Three examples where the loop body was a single basice If loop-pipelining is applied to the plain program, per-
block: the dot product, the fast-fourier-transform, and formance improves by about 2X relative to the non-

matrix multiplications, each with critical inner loops.

« One example where the loop body exhibits branching: a
stream processor kernel which operates on a stream of
numbers and performs operations on the stream depend-
ing on an op-code stream. This example illustrates that
the dynamic loop-pipelining mechanism is effective in
complex loop bodies as well.

VI. THE DOT PRODUCT

The basic code (a,b are arrays, dotP is the accumulated dot-
product):

for(1=0; I < 64; |++)
{

dotP += a[l]*b[I];
}

The unrolled version of the code used:

for(1=0; | < 64; | += 4)
{
11 =1+1; 12 =1+42; 13 =I1+3;
dotP += ((a[l]l*b[I]) + (a[l1l]*b[11])
+ (a[12]*b[12]) + (a[13]*b[13]));

The results are shown in Table I. The number of clock-
cycles needed to complete the inner loop, the number of look-
up tables needed, the number of flip-flops needed and the post-
synthesis clock frequency estimate are reported in thestabl
The last two rows correspond to the normalized performance
(time needed by the plain case relative to the optimized,case
higher is better), and the normalized performance/co$b rat
(time/(LUTs+FF) ratio normalized with respect to the plain
case, higher is better).

TABLE |
DOT-PRODUCT RESULTS WITH AND WITHOUT LOOPOPTIMIZATIONS

plain | pipelined| unrolled| pipelined

+ unrolled
Cycles 4071 | 1874 1894 582
LUTs 4288 | 5195 4809 7344
FFs 3799 | 4345 4378 5911
Freq.(MHz) |199.7| 199.7 199.7 199.7

Norm. Perf. 1 2.17 2.15 7

Norm. Perf/Cost 1 1.83 1.89 4.27

From Table I, we see

pipelined, plain case.

Four configurations were tested in each case: the ba= If loop-pipelining is applied to the unrolled program,
sic code, the unrolled code, the basic code with loop- Performance improves by more than 3X relative to the
pipelining and the unrolled code with loop-pipelining. In ~ hon-pipelined, unrolled case.

each case, the generated VHDL code was synthesized te In terms of the performance/cost ratio, the pipelined-
a Xilinx Virtex-6 FPGA and synthesis results were used ~ unrolled version is more than 3X better than the plain
to estimate the resource usage, the clock frequency and version. The normalized performance/cost ratio is 4X
the number of cycles required by the inner loop.

better when both loop optimizations are used.

i ++) {
j++) |

VII. THE FAST-FOURIERTRANSFORM(FFT) for(i 0; i < 16;
for(j=0; j < 16;
float v = 0.0;
for(k = 0; k < 16; k++) {

v += a[i][k]*b[Kk][j];

A 64 point FFT program (radix two, in-place, twiddle
factors computed apriori) with the following loop-strurgu
was used:

for (STAGE=0; STAGE < 6; STAGE++) }
{ clilli]

= V;
for (BFLY=0; BFLY < 32; BFLY++) }
{ }
Butterfly(STAGE, BFLY);]]
e unrolled version was aggressively generated so that the

} Th lled I ted that th

} inner loop simultaneously computes 16 entries of the prboduc
at a time.

where the functiorButterfly is inlined and implements the
radix-two butterfly with index BFLY in stage STAGE usingf | oat a[16]16], b[16][16], c[16][16];

the precomputed twiddle factors. In the unrolled versitwe, tfor (i = 0; i < 16; i += 4) {
inner-loop was rewritten as for(j=0; j < 16; j +=4) {
float vOO = 0.0, v01 = 0.0,

{ for(k = 0; k < 16; k += 4) {

The results are shown in Table Il (the cycle count is for a
single stage of the FFT). From Table II, we see

v33 += (a[i+3][K]*b[k][] +3]
+ a[i+3] [k+1] *b[k+1] [] +3]
+ afi+3] [Kk+2] *b[k+2] [] +3]

TABLE I + a[i +3] [k+3] *b[k+3] [j +3]);

FFT-RESULTS WITH AND WITHOUT LOOP-OPTIMIZATIONS

}
clilljl

plain | pipelined| unrolled| pipelined = v00;
+ unrolled B
Cycles 4151 | 2885 | 3110 1064 c[i+3][j+3] = v33;
LUTs 12155| 23139 | 16032 | 37831
FFs 11955| 18632 | 15299 | 28698 }
Freq.(MHz) | 186.9| 164.1 | 186.9 164.7
Norm. Perf. 1 1.26 1.33 3.42 The observations are shown in Table Ill. From Table II, we
Norm. Perf/Cost 1 0.73 1.02 1.24

TABLE Il
i o i i i MATRIX -MULTIPLICATION -RESULTS WITH AND WITHOUT
« If loop-pipelining is applied to the plain program, per- LOOP-OPTIMIZATIONS

formance improves by about 1.26X relative to the non-

pipelined, plain case. plain | pipelined| unrolled| pipelined

« If loop-pipelining is applied to the unrolled program + unrolied
. . ' Cycles 161K | 77K 13K 7810

performance improves by more than 2.5X relative to the LUTs 6323 o408 | 14891 | 31744
non-pipelined, unrolled case. _ o FEs 6974| 8818 | 12041 | 21060
« In terms of the performance/cost ratio, the pipelined- Freq.(MHz) |199.7| 199.7 | 186.1 164.1
unrolled version is only 1.24X better than the plain Norm. Perf. 1 2.09 11.5 16.9
version. Norm. Perf/Cos{ 1 1.52 5.67 4.25

The reason for the poorer results in this case is the use of the
in-place algorithm. The bottleneck in this case becomes thge

access to the memory subsystem in which the array is stored. T . :
« If loop-pipelining is applied to the plain program, per-

formance improves by about 2X relative to the non-
pipelined, plain case.

« If loop-pipelining is applied to the unrolled program, per-
formance improves by 1.5X relative to the non-pipelined,
unrolled case.

VIII.

The plain triple loop matrix multiplication algorithm was
used as a starting point.

float a[16]16], b[16][16],

M ATRIX MULTIPLICATION

c[16] [16] ;

. . . TABLE IV
o In terms of the performance/cost ratio, the pipelined- srream PROCESSOR INNER LOOP OBSERVATIONSIPELINED VERSUS

unrolled version is only 4.25X better than the plain NON-PIPELINED

version.

L . . plain | pipelined
In this instance, the aggressive loop-unrolling shows lexce Cycies 2913 334
lent performance. Loop_—pipelining Whgn combined with leop LUTs 4603| 12501
unrolling, gives a 20X improvement in the cycle count. The FFs 4248| 8808
normalized performance and performance/cost improvesnent Freq.(MHz) |184.9| 103.9
are also substantial. Norm. Perf. 1 4.86

Norm. Perf/Cost 1 2.01

IX. A STREAM PROCESSOR

The following loop was used to test a situation in which the Lo . i .
: System. Two optimizations were considered: static source-
loop body has branching.

level loop unrolling and dynamic hardware supported loop-

whi | e(1) pipelining. The loop-pipelining mechanism is implemenkbsd
{ modifying the control-flow in the generated hardware (witho
float x = read_float32("x_pipe"); disturbing the data-path).
float y = read_float32("y_pipe"); The data obtained from four inner loop kernels is encourag-
uint8 t op_code = read_uint8("op_pipe"); ing.The firstthree were examples in which the inner loop body
consisted of a single basic block. In these cases, both loop-
float result = 0; pipelining and loop-unrolling lead to substantial perfamoe
i f(op_code == 0) gains. Further, using both optimizations together resimts
result = x*y; multiplicative gains and in call cases, leads to hardwariehvh
el se if(op_code == 1) is substantially faster and more efficient (in terms of the
result = x+y; performance/cost ratio). The performance gain is lowdrefe
el se if(op_code == 2) is a bottleneck in the algorithm itself, such as in the FFTecas
result = (x*x) - (y*y); in which accesses to the in-place array reduce the perfaenan
el se if(op_code == 3) gains seen due to the loop optimizations. In the fourth inner
result = (x +y) = (x +vYy); loop kernel, we considered a loop body which had branching.
el se In this case, considerable performance and performarste/co
result = 0; gains were observed when loop pipelining was enabled.
wite_float32("z_pipe",result); Thus, the use of hardware based dynamic loop-pipelining
} techniques offers a significant boost in performance in -hard

ware synthesized from single-threaded programs. The perfo

: ~~ " mance boost provided by the dynamic loop-pipelining in hard
strlearln:t;.dDe%end!tr]{g on tt?e valuet Off—(‘:’de’ a result s\ are seems to indicate that its use, especially in conjoncti
calculated an wn en 9“ 0 an outpu .s'ream. with aggressive loop unrolling can offer a substantial wigdun

i In °Tde_r to plpel!ne this loop, the pondltlonal statemenmts g, gap between the quality of automatically generated
first _ellmlnated using guards. This is done by calculatirg th, qyare and hand crafted hardware implementations of the
predicates same algorithm. This needs to be investigated further.

In this loop, =,y and op_code are read from three input

(op_code == 0)

(op_code == 1) _ _

(op code == 2) [1] G. Venkataramani, M. Budiu, T. Chelcea, and S. Goldst&nto Asyn-
P_ - chronous Dataflow Circuits: An End-to-End Toolflow,” international

(op_code == 3) Workshop on Logic & Synthesis, Temecula, CA, June 2004, pp. 501—

508.
and using these predicates to guard the execution of thg s. Gupta, N. Dutt, R. Gupta, and A. Nicolau, “SPARK : A Higevel
statements which depend on these conditions. This is done Synthesis FfameWOe:]k FOfprplying Parallelizing Compilerngorma-
. . . tions,” in International Conference on VLS Design, January 2003.

automatically 'n_ our compiler. . . [3] S.D. Sahasrabuddhe, “A competitive pathway from higrel@rograms
The observations are shown in Table IV. The time reported to hardware” Ph.D. dissertation, [IT Bombay, 2009.

is that needed to process 16 elements from the streams (tHt % D-_S“aAhaCStfabgdffl‘e' S. SUbfaman'a”f,f_ K. ?h‘IDtSh' f AWt[:tM”ﬂ’-f

. . . esal, -10-r Ow as an energy eiiicient alternative use o

IS, to complete 16 |te_rat|ons of the _|00p). embedded processors in digital systems,Di8D 2010, 2010, pp. 147—

We observe a 4X improvement in performance and a 2X 154.

Improvement in the performance/cost ratio. [5] T. Rinta-Aho, M. Karlstedt, and M.P. Desai, “The Cllcthpga tool-
chain,” in USENIX ATC-2012. 2012, USENIX Association, Berkeley

REFERENCES

CA.
X. CONCLUSION [6] M. Wolfe, High Performance Compilers for Parallel Computing.
. Lo . Addison-Wesley, 1995.
We have CO”?'der?d the prOblem of optimizing INN€7) s s, MuchnickAdvanced Compiler Design and Implementation. Mor-
loop implementations in an algorithm-to-hardware contjuta gan Kaufmann, 1997.

(8]

(9]

[20]

[11]

M. Weinhardt and W. Luk, “Pipeline Vectorization|EEE Transactions

on the Computer-aided Design of Integrated Circuits and Systems,

vol. 20, no. 2, pp. 234-248, 2001.

J. Cardoso, “Self Loop Pipelining and Reconfigurabledilatv Arrays,”
in Computer Systems: Architecture, Modeling and Simulation, LNCS

3133. Springer Verlag, July 2004, pp. 234-243.

R. Kastner, “Synthesis techniques and optimizationsrégonfigurable
systems,” Ph.D. dissertation, University of California, sLéngeles,
2002.

M. Desai, “The Aa Language Reference Manual,” TechnReport,

Department of Electrical Engineering, IIT Bombay, 2012.

