
Eliminating registers at the outputs of data-path
operators

1 Introduction
Every operator in the data-path has a register at its output, that takes at least one clock cycle
before signalling completion. In some cases it may be possible to eliminate this register. The
result is a combinational path from the input of the operator to the output register of the next
operator. For example, Figure 1(a) shows a sequence of operations (A −→ B −→ C) where
ovals represent combinational logic and boxes represent registers. If the register reg B is re-
moved, the logic for op B and op C is combined into one large combinational path as shown
in Figure 1(b).

reg_A op_B reg_B op_C reg_Cop_A

(a) Operator logic separated by registers.

reg_A op_B reg_Cop_Cop_A

(b) Combinational path lengthened by eliminating register reg B.

Figure 1: Eliminating registers at operator outputs.

For this transformation to be correct, we must guarantee that the absence of the register does
not result in invalid data at the input of other nodes in the data-path. When reg A is updated,
the new value at the output of op B is immediately available at the input of op C, in the absence
of reg B. This may result in an incorrect computation at C, if the actual operation was meant
to use the old value stored in reg B. In the following sections, we propose a set of necessary
and/or sufficient conditions that guarantee that the output of all computations remains valid
after eliminating a register.

2 Terminology
Register definition: An “operation”(?) in the control-path that results in updating the value of

a register in the data-path is called a definition of that register. The set of such definitions
of a register A is written as DA = {d0

A, d
1
A, . . .}.

Register use: A definition di
B is said to use register A when the value assigned to B is com-

puted in a “non-trivial”(?) manner from the value of A. This is written as A 7→ di
B.

1



Predecessor: A register A is termed as the predecessor of a registerB if the value of A is used
in some definition ofB, denoted by the operator “−→”. Also, B is termed as a successor
of A.

A −→ B ⇐⇒ ∃di
B such that A 7→ di

B

3 Values latched from external sources
Some operators in the data-path acquire values from the environment, such as memory access
operators and input/output ports. The environment is free to change the value after that partic-
ular invocation of the operator is done — the register at the output of the operator is required
to maintain it until it has been used by other operations in the data-path. Hence that register
cannot be eliminated.

Condition 1 Every definition of the candidate register must assign a value computed from an
expression that consists of only constants and values stored in other registers in the data-path.

4 Registers with conditional definitions
In general, a data-path operator may have multiple control inputs and multiple data outputs
(registers). When the operator is invoked by a particular control input, the state machine of the
operator determines whether a particular register is defined. Each such definition may assign a
different value to the same register. This behaviour results in a multiplexer that selects the result
of multiple combinational circuits. If such a register is eliminated, the internal multiplexing
(which is dynamic) will drive invalid data at the output.

Condition 2 Every definition of the candidate register must assign the same value to the reg-
ister.

Figure 2: Multiple definitions in a φ-function.

For example, the φ-function in the AHIR data-path has two control inputs, two data inputs
and a single output register, as shown in Figure 2. When definition d0

M (or respectively d1
M ) is

invoked, the corresponding data-input D0 (respectively D1) is assigned to the output register.
Eliminating the output register will make it impossible to forward only one of the two data
inputs to the output. Hence, the register at the output of a φ-function cannot be eliminated.

2



5 Definition-Use sequences
A register R that satisfies Condition 2 is assigned a value generated by a single combinational
circuit. The output of the circuit changes when any of its input registers is updated. In the
absence of the register R, this value is immediately visible to the uses of R. Hence R can be
eliminated only if the control-path guarantees that when any of the inputs change, R is always
updated before it is used.

Condition 3 For every predecessor P and successor S of the candidate register B, if there is
a path from any definition of P to any definition of S that uses the value of B, then that path
must pass through some definition of B.

Figure 3: Conditional definitions in the presence of branches.

For example, consider the output of operatorB shown in Figure 3. Definition d0
B is executed

only if the appropriate branch is taken in the control-path after definition d0
P . The value of B

is used by definition d1
M , which occurs along the same path in the control-path. Thus, every

path from a definition of P to a definition of M that uses B (there is only one such path) passes
through a definition of B. Hence B satisfies this condition for elimination.

Figure 4: Registers in a pipeline.

3



Figure 4 shows a pipeline that invokes dA, dB and dC in parallel, where A 7→ dB and
B 7→ dC . Register B does not satisfy Condition 3 since there is a path from dA to dC which
does not pass through dB. Hence register B cannot be eliminated.

6 Cycles in the data-path
Every cycle in the data-path must have at least one register in order to prevent a combinational
loop.

Condition 4 If the candidate register occurs in a cycle in the data-path, then it must not be the
only register in that cycle.

4


