AhirV2: from algorithms to hardware
An overview

Madhav Desai
Department of Electrical Engineering

Indian Institute of Technology
Mumbai 400076 India

March 7, 2018

1 What is AhirV2?

AhirV2 is a set of tools which can convert a C description of a system to an

equivalent hardware implementation (described in VHDL). Using these tools,

it is possible to take an algorithmic approach to the design of hardware.
The flow of transformations is illustrated in Figure 1.

e Given a high-level C, we rely on an LLVM (www.llvm.org) compatible
compiler such as clang (www.clang.org) to produce LLVM byte code.
Currently, the AhirV2 flow uses LLVM byte code as a starting point.

e The LLVM byte-code program is compiled to an intermediate assembly
form. AhirV2 introduces an intermediate assembly language Aa which
serves as a target for sequential programming languages (such as C) as
well as for parallel programming languages. An Aa program consists of
modules (analogous to sub-programs in C) which can call each other,
and can communicate through storage objects as well as through pipes
(first-in-first-out buffers).

e From the Aa description, a virtual circuit (described in a virtual circuit
description language vC) is generated. The chief optimizations car-
ried out at this step are dependency based operation ordering, dynamic

1

CIC++
source code

clang compiler
LLVM tools

ve2vhdl
Ilvm byte code
' e d : vC description
AHIRV2 Flow
llvm2aa

Figure 1: AhirV2 flow

loop-pipelining and decomposition of the system memory into disjoint
spaces based on static pointer analysis (this considerably improves the
available memory bandwidth and reduces system cost). A vC descrip-
tion also consists of modules: however, the modules are presented in a
factored form (control X data X storage).

e From the vC description, a VHDL description of the system is gen-
erated. The system consists of modules, memory spaces and FIFO
buffers. The modules are further broken down into a control-path (a
live and safe Petri net), and a data-path (a graph of operators and
wires). The chief optimization carried out at this stage is resource
sharing. The vC description is analyzed to identify operations which
cannot be concurrently active and this information is used to reduce
the hardware required.

e The VHDL description produced from vC is in terms of a library of
VHDL design units which has been developed as part of the AhirV2 ef-
fort. This library consists of control-flow elements, data-path elements
and memory elements.

Thus, to generate hardware using the AhirV2 flow, it is possible to start

at the C-level, at the Aa level at the vC level or at the VHDL level (or a
combination of all these levels). Starting at a higher level is easier for the
programmer, but using lower level representations will usually lead to more
efficient hardware. Typically, if we start from C, circuits produced by the
AhirV2 flow are upto two orders of magnitude more energy-efficient than a
processor [1].

Currently, there are only two restrictions in mapping a C program to
VHDL using the AhirV2 flow:

e No recursion, no cycles in the call-graph of the original program.

e No function pointers.

2 Use Scenario 1: a transformational system

Many programs are transformational in nature. There is some input data X,
and the program can be modeled as a function f which acts on X to produce
output data Y.

2.1 A trivial example

Consider the following trivial example:

int add(int a, int b)
{
int ¢ = (a+b);
return(c);

¥

We wish to generate a circuit which implements the specification implied by
this program.

We convert the program to LLVM byte code using the clang compiler
(www.1llvm.org)

clang -std=gnu89 -emit-llvm -c add.c

This produces a binary file add.o which is the LLVM byte-code. To make
the byte-code human readable, we dis-assemble it using an LLVM utility

1lvm-dis add.o

This is what the LLVM assembly code looks like

; ModuleID = ’add.o’
target datalayout = "e-p "
target triple = "i386-pc-linux-gnu"

define 132 ©add(i32 %a, 132 %b) nounwind {
%1 = alloca 132, align 4
%2 = alloca 132, align 4
hc = alloca i32, align 4
store i32 %a, i32% %1, align 4
store 132 b, i32% %2, align 4

%3 = load i32x %1, align 4
W4 = load i32x %2, align 4
%5 = add nsw 132 %3, %4

store i32 %5, i32% Jc, align 4
%6 = load i32% Yc, align 4
ret i32 %6

}

To get to this point, we could have used several optimizations which are avail-
able in the LLVM frame-work. But we work with the unoptimized version
to illustrate the storage decomposition which is carried out by the AhirV2
tools.

The LLVM byte-code is our starting point. We first convert it to Aa .

llvm2aa add.o | vcFormat > add.o.aa
This produces an Aa program

// Aa code produced by llvm2aa (version 1.0)
$module [add]
// arguments
$in (a : $uint<32> b : $uint<32>)
$out (ret_val__ : $uint<32>)
$is
{
$storage stored_ret_val__ : $uint<32>
$branchblock [add]
{

//begin: basic-block bb_0
$storage iNsTr_0 : $uint<32>
$storage iNsTr_1 : $uint<32>
$storage ¢ : $uint<32>
iNsTr_0 := a

iNsTr_1 := b

// load

iNsTr_4 := iNsTr_O

// load

iNsTr_5 := iNsTr_1

iNsTr_6 := (iNsTr_4 + iNsTr_5)
c := iNsTr_6

// load

iNsTr_8 := c

stored_ret_val := iNsTr_8

$place [return__]
$merge return__ $endmerge
ret_val__ := stored_ret_val__

Now, this Aa code is converted to a virtual circuit vC representation.
Aa2VC -0 add.o.aa | vcFormat > add.o.aa.vc

The virtual circuit representation is a bit too verbose to reproduce entirely
here, but we show some critical fragments

$module [add]
{
$in a:$int<32> b:$int<32>
$out ret_val__:$int<32>
$memoryspace [memory_space_0]
{
$capacity 1
$datawidth 32
$addrwidth 1
// ret-val is kept here
$object [xxaddxxstored_ret_val__] : $int<32>

3

$memoryspace [memory_space_1]

{

3

$capacity 1

$datawidth 32

$addrwidth 1

// a is kept here.

$object [xxaddxxaddxxiNsTr_0]

$memoryspace [memory_space_2]

{

by

$capacity 1

$datawidth 32

$addrwidth 1

// b is kept her

$object [xxaddxxaddxxiNsTr_1]

$memoryspace [memory_space_3]

{

$
{

+
/

$capacity 1
$datawidth 32
$addrwidth 1

// c is kept here.

: $int<32>

: $int<32>

$object [xxaddxxaddxxc] : $int<32>

Cp

// a control-flow petri-net..

/ end control-path

$DP

{

// wires and operators.

// links between CP and DP

verbose. .

Note that the stored objects a,b,c and ret_val__ are mapped to different
memory spaces. Thus, the chief difference between a vC description and a
processor is that the vC program partitions storage into small units which
are accessed only by operators that need them.

Finally, we take the vC description and convert it to VHDL

vc2vhdl -t add -f add.o.aa.vc | vhdlFormat > system.vhdl

This produces a VHDL implementation of the system with add marked
as a top-level module. The VHDL that is produced is too voluminous to
reproduce here, but the top-level system entity is

entity ahir_system is -- system
port (--

add_a : in std_logic_vector(31 downto 0);
add_b : in std_logic_vector(31 downto 0);
add_ret_val_x_x : out std_logic_vector(31 downto 0);
add_tag_in: in std_logic_vector(0 downto 0);
add_tag_out: out std_logic_vector(0 downto 0);
add_start_req : in std_logic;
add_start_ack : out std_logic;
add_fin_req : in std_logic;
add_fin_ack : out std_logic;
clk : in std_logic;
reset : in std_logic); --

end entity;

The AHIR system is a purely synchronous implementation which uses
only the rising edge of the clk input. The reset is synchronous, and is active
high.

The VHDL implementation of a module in the AHIR system corresponds
to that of a pipeline stage (see Figure 2). The ports

add_a add_b
correspond to the input arguments of the top-level function add. The port
ret_val_x_x

corresponds to the value returned by add. The pair of ports

7

AHR system

Return
Input Top-level module (add) Values
Arguments
strt_teq fneg
start_ack fin_ack
L[
fag in

tag_out

Figure 2: System and Module Interfaces

add_start_req add_start_ack

implement a start protocol; The environment asserts add_start_req when it
wants to start add, and the AHIR system asserts add_start_ack whenever
it is ready to start. The environment is required to hold the input arguments
steady until it observes the acknowledge from the AHIR system. The pair of
ports

add_fin_req add_fin_ack

implement a finish protocol; The environment asserts add_fin_req when it
is in a position to accept the returned value from a previously started add,
and the AHIR system asserts add_fin_ack whenever it has a return-value
avaiable. The returned value is valid only when the acknowledge from the
AHIR system is asserted. The ports

add_tag_in add_tag_out

provide a mechanism by which a tag can be presented by the environment
to the AHIR system to identify a particular invocation of the add function.
The width of the tag is chosen (by the AhirV2 tool-chain, specifically, the
ve2vhdl tool) to be large enough that each active call to add can be identified
uniquely.

3 Use Scenario 2: pipelines

A pipeline is a collection of parallel processes which work together to accom-
plish a certain function (or to finish a job). Pipelines are commonly used in
software and in hardware systems.

The concept of pipes or sockets provide a natural mechanism for commu-
nication between parallel processes in a software pipeline. In Aa (and vC),
pipes are first-in-first-out buffers which provide a corresponding communica-
tion construct in the generated hardware.

3.1 An example of a trivial pipeline

Consider the following pipeline which has two stages foo and bar:
Environment --> foo --> bar --> Environment

The stage foo takes a 32-bit integer from the external world, complements it
and passes it on to stage bar. The stage bar takes the 32-bit number from
foo, complements it and sends it to the external world (in effect, nothing
useful is done, this is only an illustration).

If we are writing this pipe-line as a program, we could implement two
independent processes (or threads) and use named pipes to perform the com-
munication between these processes/threads (and the “outside world). For
example:

#include <iolib.h>

void foo()
{
while(1)
{

uint32_t data = read_uint32("inpipe");
write_uint32("midpipe", “data);

}
}
void bar()
{
while(1)
{

uint32_t data = read_uint32("midpipe");
write_uint32("outpipe", “data);
+
}

In this example, the read/write functions are provided as part of a pipeHan-
dler library which is bundled with the AhirV2 distribution.

The two functions can be compiled into separate processes or can be used
in threads in a multi-threaded program (using pthreads, for example), and
one gets a software pipeline, in which the inter-process communication is
done using the read/write function calls, which use named pipes.

One can also map this pipeline to a VHDL system, using the following
flow. One uses the standard flow that has already been described:

clang -std=gnu89 -I../../../iolib/ -emit-1lvm -c prog.c
llvm2aa prog.o | vcFormat > prog.o.aa
Aa2vC -0 -I mempool -C prog.o.aa | vcFormat > prog.o.aa.vc
vc2vhdl -C -s ghdl -T foo -T bar -f prog.o.aa.vc\

| vhdlFormat > system.vhdl

Note that in this case, we use the -T option in vc2vhdl to specify that foo
and bar are free-running top-level modules. The resulting AHIR system in
system.vhdl implements the pipeline (the block diagram of the system is
shown in Figure 3) with the following interface:

entity ahir_system is -- system
port (--

clk : in std_logic;
reset : in std_logic;
inpipe_pipe_write_data: in std_logic_vector(31 downto 0);
inpipe_pipe_write_req : in std_logic_vector(0 downto 0);
inpipe_pipe_write_ack : out std_logic_vector(0 downto 0);
outpipe_pipe_read_data: out std_logic_vector(31 downto 0);
outpipe_pipe_read_req : in std_logic_vector(0 downto 0);
outpipe_pipe_read_ack : out std_logic_vector(0 downto 0)); --

end entity;

The system has interfaces corresponding to the pipes inpipe and outpipe
through which data is exchanged.

10

AHIR system

o read
) midpipe
write il

interface
interac]': :i>] = :i>] Ei>10

oimpipe | jppipe | fo0 b |oupipe | outpipe

Figure 3: Hardware implementation of Foo-Bar pipeline

In practice, one can have any number of pipes and interacting processes
in a pipeline implementation.

4 Storage variables and memory spaces

In an Aa program, variables can be of three kinds: storage variables, pipe
variables, or single-static-assignment variables. Storage variables are im-
plemented in memory, pipe variables as FIFO buffers, and single-static-
assignment variables as registers.

While transforming an Aa description down to a vC description, the
storage variables in the Aa program need to be grouped into memory spaces.
Two storage variables are put in the same memory space only if we determine
that a pointer de-reference in the Aa program can point into either of the
two storage variables (this is determined by a conservative static analysis).

A memory space in a vC description is characterized by a word-length
(the greatest common divisor of the widths of accesses to this memory space),
an address-width (wide enough to allow access to all words in the memory
space), and a capacity (the number of words in the memory space). Typically,
a program will have many small memory spaces corresponding to scratch

11

storage and some large memory spaces which correspond to arrays etc.
There is one small issue, however. Consider the following C program:

int main(int* b)

{
int q[2];
q[0] = *b;
ql1] = ql0];
return(q[1]);
}

When this program is mapped to a circuit, we identify two distinct memory
spaces, one which contains the array ¢ and the other corresponding to the
external world (the one referred to by the pointer b). Where is the external
memory physically located? In the AhirV2 flow, we can either locate it
outside the system or inside the system which is being described by this
program.

If the external memory is to be placed outside, then accesses to it from
within the system must be routed outside the system. On the other hand if
it is to be placed inside, a storage object corresponding to it must be created
and all accesses to the external memory must be directed at this storage
object. Further, the external world must have a mechanism for accessing
this storage object.

Both options are supported in the AhirV2 flow through AaLinkExtMem.

4.1 Keeping the external memory outside the system

In this scenario, all memory accesses which are resolved to be to a storage
object which is not declared in the Aa program are redirected outside the
system by using pipes.

If you want to keep the external memory outside, you will have to go
through the following sequence

first use clang (or llvm-gcc) to generate llvm-byte-code
clang -std=gnu89 -emit-1llvm -c foo.c

#

disassemble so that you can make sense of the 1llvm bc.
1lvm-dis foo.o

#

12

OK, now take the 1llvm byte code

and generate an Aa description.

use the storageinit option to initialize

global storage.

(the pipe to vcFormat is to prettify the output)
1llvm2aa -storageinit foo.o | vcFormat > foo.o.aa

#

#

Do an Aa -> Aa transformation: map external

memory outside..

AalinkExtMem foo.o.aa | vcFormat > foo.o.memlinked.ExternalQutside.aa

Now take the Aa code and generate a virtual

circuit..

the -0 flag does dependency analysis in straight-line
code and parallelizes it.

H H H H HH

Aa2VC -0 foo.o.memlinked.ExternalOutside.aa | vcFormat\
> foo.o.memlinked.ExternalOutside.aa.vc

#

finally, generate vhdl from the vc description. Note that
you will have to mark the module foo as well as the

extmem_store_32/load_32 modules as top-level modules

so that it is possible for the outside world to serve

requests made from inside.

#

vc2vhdl -0 -t foo -t extmem_store_32 -t extmem_load_32\
-f foo.o.memlinked.ExternalOutside.aa.vc | vhdlFormat\
> foo_o_aa_memlinked_external_outside_vc.vhdl

If you look at the generated top-level VHDL entity, its ports will be

entity ahir_system is -- system
port (--
clk : in std_logic;
reset : in std_logic;

- some-lines-omitted --

13

-- foo-related ports —--
- some-lines-omitted --

extmem_read_address_32_pipe_read_data: out std_logic_vector(31 downto 0);
extmem_read_address_32_pipe_read_req : in std_logic_vector(0 downto 0);
extmem_read_address_32_pipe_read_ack : out std_logic_vector (0 downto 0);
extmem_read_data_32_pipe_write_data: in std_logic_vector(31 downto 0);
extmem_read_data_32_pipe_write_req : in std_logic_vector (0 downto 0);
extmem_read_data_32_pipe_write_ack : out std_logic_vector(0 downto 0);
extmem_write_address_32_pipe_read_data: out std_logic_vector(31 downto 0);
extmem_write_address_32_pipe_read_req : in std_logic_vector (0 downto 0);
extmem_write_address_32_pipe_read_ack : out std_logic_vector (0 downto 0);
extmem_write_data_32_pipe_read_data: out std_logic_vector(31 downto 0);
extmem_write_data_32_pipe_read_req : in std_logic_vector (0 downto 0);
extmem_write_data_32_pipe_read_ack : out std_logic_vector(0 downto 0)); --

end entity;

The external memory read and write address and data are clearly visible.
The outside world is responsible for serving the read/write requests made
from the inside.

4.2 Keeping the external memory inside the system

In this scenario, we will assume that all accesses to storage variables not
defined in the Aa program are to be directed to a storage variable which is
to be a viewed as a shared memory pool that is visible to the Aa program as
well as to the outside world. The visibility to the outside world is provided
by access functions that the outside world can use to read/write from this
shared memory pool.

You will have to go through the following sequence:

use clang (or llvm-gcc) to generate llvm-byte-code
clang -std=gnu89 -emit-1lvm -c foo.c

#

disassemble so that you can make sense of the 1llvm bc.
1lvm-dis foo.o0

#

0K, now take the 1llvm byte code

14

and generate an Aa description.

use the storageinit option to initialize

global storage.

(the pipe to vcFormat is to prettify the output)
llvm2aa -storageinit foo.o | vcFormat > foo.o.aa

#
#
Do an Aa -> Aa transformation: map external
memory to a storage area inside the system...
-1 1024 says that the amount of memory that will be
referred to is 1024 bytes.
-E mempool says that the storage object corresponding
to external memory is named mempool.
AalinkExtMem -I 1024 -E mempool foo.o.aa | vcFormat\
> foo.o.memlinked.Externallnside.aa

#
Now take the Aa code and generate a virtual

circuit..

the -0 flag does dependency analysis in straight-line
code and parallelizes it.

the -I mempool option says that external memory is

to be mapped inside the system to object mempool..

#

Aa2vVC -0 -I mempool foo.o.memlinked.Externallnside.aa\
| vcFormat > foo.o.memlinked.Externallnside.aa.vc

finally, generate vhdl from the vc description.

note that you will have to mark mem_load__ and mem_store__
as top-level modules, so that the external world can
access its memory pool inside the system.

H H H H H R

vc2vhdl -0 -t foo -t mem_load__ -t mem_store__ \
-f foo.o.memlinked.ExternalInside.aa.vc\
| vhdlFormat > foo_o_aa_memlinked_external_inside_vc.vhdl

In this example, we are saying that the shared memory pool variable is
named mempool, and it is an array of 1024 bytes. The generated top-level
VHDL entity has the following ports:

15

entity ahir_system is -- system
port (--

foo_b : in std_logic_vector(31 downto 0);
foo_ret_val_x_x : out std_logic_vector(31 downto 0);
foo_tag_in: in std_logic_vector(0 downto 0);
foo_tag_out: out std_logic_vector(0 downto 0);
foo_start : in std_logic;
foo_fin : out std_logic;
mem_load_x_x_address : in std_logic_vector(31 downto 0);
mem_load_x_x_data : out std_logic_vector(7 downto 0);
mem_load_x_x_tag_in: in std_logic_vector(0 downto 0);
mem_load_x_x_tag_out: out std_logic_vector(0 downto 0);
mem_load_x_x_start_req : in std_logic;
mem_load_x_x_start_ack : out std_logic;
mem_load_x_x_fin_req : in std_logic;
mem_load_x_x_fin_ack : out std_logic;
mem_store_x_x_address : in std_logic_vector(31 downto 0);
mem_store_x_x_data : in std_logic_vector(7 downto 0);
mem_store_x_x_tag_in: in std_logic_vector(0 downto 0);
mem_store_x_x_tag_out: out std_logic_vector(0 downto 0);
mem_store_x_x_start_req : in std_logic;
mem_store_x_x_start_ack : out std_logic;
mem_store_x_x_fin_req : in std_logic;
mem_store_x_x_fin_ack : out std_logic;
clk : in std_logic;
reset : in std_logic); --

end entity;

The system provides memory load and memory store function interfaces
to the external world (through mem_load.. and mem store..). The shared
memory variable is guaranteed to have a base address of 0. Thus, byte
mempool[l] will be present at address 1.

5 The tools

We assume that you have access to either llvm-gcc or clang as the front-
end compiler which generates LLVM byte-code from C/C++. The current

16

AhirV2 toolset is consistent with llvm 2.8 and clang 2.8.
The other tools in the chain are described below.

5.1

llvim2aa

This tool takes LLVM byte code and converts it into an Aa file.

1llvm2aa options bytecode.o > bytecode.aa

The generated Aa code is sent to stdout and all informational messages are
sent to stderr. On success, the tool returns 0.
The options:

e -modules=listfile : Specify the list of functions in the bytecode which

should be converted to Aa . The names of these functions should be
listed in the text-file listfile. If absent, all functions are converted.

e -storageinit : Storage objects in the llvm bytecode are explicitly ini-

tialized in the generated Aa code. An initializer routine named
global_storage_initializer

is instantiated in the Aa code for this purpose.

e -pipedepths=filename : Specifies a file which contains the depths of

pipes which are part of the generated Aa code.

e -extract_do_while : Innermost loops which are marked using a call

to the special function
_loop_pipelining_on_
are extracted as pipelined do-while loops. This is necessary for au-

tomatic cross-iteration parallelization of inner loops in the generated
hardware (substantial performance benefits can be realized).

17

5.2 AaLinkExtMem

This linker tool takes a list of Aa files, elaborates the program, creates a
global storage initializer, and does memory space decomposition. The exter-
nally visible memory space is linked in one of two ways: either it is assumed
to be external and all accesses to it are routed out of the Aa program, or it is
assumed to be internal and assumed to consist of a memory object (an array
of bytes). External pointer dereferences are handled as if they are directed
at this memory object.

AalLinkExtMem options filel.aa file2.aa ... > linked.aa

The generated Aa code is sent to stdout and all informational messages are
sent to stderr. On success, the tool returns 0.
The options:

e -1 n: specifies that external references to memory are to be mapped as
if they are to an internal object whose size is n bytes.

e -E obj-name : specifies that the object to which external references
are mapped is to be named obj-name.

We recommend that you use the -I and -E options to locate externally visible
memory into a specified object in the Aa program.

If the -I option is not used, then all external memory references are routed
out of the Aa program through pipes. In this case, if the Aa compiler
determines that there is some pointer in the program which can point to
both internal and external memory, then this will be declared as an error!

If the programs being linked contain memory initialization routines, the
linker generates a global storage initialization function which is named

global_storage_initializer

This global initializer calls all the memory initializers in the programs being
linked.

5.3 AaOpt

The optimization utility AaOpt takes an Aa program (list of Aa files) and
produces an optimized version of the source program.

18

AaOpt options filel.aa file2.aa ... > optimized.aa

The optimized Aa code is printed to stdout. On success, the tool returns a
0 (else a non-zero). Macro and inlined function calls in the source code are
substituted in place in the optimized code.

The options:

e -r module-name (optional) : specifies a root module in the system.
Multiple root modules can be specified. All dead code (which is not
reachable from a root module) is eliminated.

e -I extmem-object (optional) : similar to AaLinkExtMem, this option
specifies the name of the extmem-object in the source Aa files.

e -B (optional) : if specified, add buffering to balance pipelined loops so
that loop performance is not bottlenecked by inadequate buffering.

5.4 Aa2vVC

This tool takes a list of Aa programs and converts them to a vC description.
Aa2VC options filel.aa file2.aa ... > result.vc

The generated vC code is sent to stdout and all informational messages are
sent to stderr. On success the tool returns 0.
The options:

e -0 : if used, sequential statement blocks are parallelized by doing de-
pendency analysis.

e -C :if used, a C stub is created for every module that is not called from
within the system. These stubs can be used to interface to a VHDL
simulator (or even drive hardware) to verify the VHDL code generated
by downstream tools.

e -U : memory subsystems will be unordered (that is, will not guaran-
tee in-order completion of accesses). This leads to a simpler memory
subsystem, but more conservative control flow. The default is that all
memory subsystems are ordered (will complete read/write requests in
the order that they are accepted).

19

e -r root-module (optional): specifies a root module. Code which is
not accessible from a root-module is considered as dead code and is
ignored.

e -1 obj-name : if specified, all external memory references are con-
sidered as being directed at the storage object named obj-name. If
not specified, then the tool will throw an error if it finds a pointer
dereference that cannot be resolved as pointing only to storage objects
declared inside the Aa program.

5.5 vc2vhdl

Takes a collection of vC descriptions and converts them to an AHIR system
described in VHDL.

vc2vhdl [-0] [-C] [-q] [-a] [-e <entity-name] [-w]\
-t/-T foo [-t/-T bar -t/-T bar2 ...]\
-f filel.vc —-f file2.vc ... > system.vhdl

The options:

e -t : to specify the modules which are to be accessible from the ports of
the generated VHDL system. Such modules have to be top-level (that
is, they cannot be called from within the program). Multiple top-level
modules can be specified in this way. The control and argument ports
for these modules are visible at the interface of the generated AHIR
system.

e -T : to specify top-level modules which are to be free-running inside
the AHIR system. Multiple top-level modules can be specified in this
way. Such modules do not have any arguments and do not return any
values. Their only mechanism of communication with the world outside
the AHIR system is through pipes. The control ports for these modules
are not visible at the interface of the generated AHIR system. In the
AHIR system, these modules are started on reset and are run forever
(restarted after they finish, forever).

e -f file-name : specifies the vC files to be analyzed. Multiple vC files
may be specified. An object must be defined before it is used, so the
vC files must be specified in the correct order.

20

-O : optimize the generated VHDL by compacting the control-path.
This does not change the resulting hardware, but makes the generated
VHDL file smaller.

-C : the VHDL code has a system test bench which interfaces to foreign
code using a VHPI/Modelsim-FLI interface. If this is not specified, the
generated test bench simply instantiates the system and starts all top-
level modules off (you will need to fill in your own test bench here).
The C testbench is usually easier to write (it probably already exists
in the form of the original program).

-a : try to minimize the area of the resulting VHDL by sharing opera-
tors to the maximum extent possible (allowing potential contention for
resources). This will result in a slower (usually by 2X) system, but will
also reduce the area (usually by 0.5X). If not specified, two operations
will be mapped to the same operator only if it can be proved that they
cannot be active simultaneously.

-q : if specified, do aggressive register insertion to minimize the clock
period.

-S bypass-stride : by specifying the bypass stride (an integer > 1),
the user can trade-off clock cycles versus clock period. The lowest clock
period will be obtained for -S 1.

-e top-entity-name : The generated top-level VHDL entity corre-
sponding to the AHIR system is named top-entity-name. The default
is ahir_system.

-L function-library : AhirV2 provides some built in operator functions
which can be called from your code. These are organized as function
libraries and this option specifies a function library to look into when
generating VHDL. For example -L fpu gives access to the floating point
library which provides some useful built in functions (e.g. fpalu32,
fpalu64 etc.).

-w : If specified, the VHDL system and test-bench are generated as
separate unformatted VHDL files. You will need to format these using
the vhdlFormat command.

21

e -s ghdl/modelsim : If ghdl is specified with the -s option, then
the generated testbench (if -C is specified) uses the VHPI interface to
link with foreign code. Otherwise, the generated testbench (if -C is
specified) uses the Modelsim FLI interface to link with foreign code.

The tool performs concurrency analysis to determine operations which
can be mapped to the same physical operator without the need for arbi-
tration. It also instantiates separate memory subsystems for the disjoint
memory spaces (in practice many of the memory spaces are small and are
converted to register banks).

5.6 Aa2C: convert an Aa description into a C program

The AhirV2 flow offers considerable flexibility to a system designer. For
example, it is possible to write code directly in Aa in order to get more
optimal implementations (relative to those obtained starting from C). In
such cases, if we wish to simulate the Aa description, we would use the
Aa2C utility to convert the Aa code to ANSI C, and then compile it in the
usual way.

The Aa2C program can be summarized as

Aa2C [-I <ext-mem-object>] <aa-file> (<aa-file>)x*
The only option is:
e -] jext-mem-object;: the same behaviour as in Aa2VC.

The remaining arguments are Aa files which will be linked and converted to
C code. Two outputs files are created:

e aa_c_model.h : a header file declaring functions in the generated source
code.

e aa_c_model.c : a source file containing function definitions correspond-
ing to the Aa modules.

External calls into the generated C code must have the form:
void foo (Ctype_1 in_1, Ctype_2 in_2, Ctype_3* out_1, Ctype_4x

where Ctype is either a float or double or (int/uint)(64/32/16/8)_t type. You
can then link your external code with the generated C code in the usual way.

22

out_2);

5.6.1 Restrictions in using Aa2C

The current implementation of Aa2C produces un-threaded code. Thus, if
you have a parallel block in your Aa code, the statements in the parallel block
are serialized in the resulting C program. This can result in the generated C
program potentially hanging (if one of the statements in the parallel block
runs for-ever). Another situation is when two concurrent blocks in the Aa
program are writing and reading from the same pipe. In such a case, the
serialized code may get dead-locked. You need to be careful that your Aa
code does not have such situations (the simplest option is to not use parallel
blocks in the Aa code!).
This issue will be fixed in a future release of Aa2C.

5.7 Miscellaneous: vcFormat and vhdlFormat

The outputs produced by Aa2VC and vc2vhdl are not well formatted. One
can format Aa and vC files using vcFormat as follows

vcFormat < unformatted-vc/aa-file > formatted-vc/aa-file

and similarly use vhdlFormat to format generated VHDL files.

References

[1] Sameer D. Sahasrabuddhe, Sreenivas Subramanian, Kunal P. Ghosh,
Kavi Arya, Madhav P. Desai, ”A C-to-RTL Flow as an Energy Effi-
cient Alternative to Embedded Processors in Digital Systems,” DSD,
pp.147-154, 2010 13th Euromicro Conference on Digital System Design:
Architectures, Methods and Tools, 2010

23

