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Abstract. This paper presents some interesting concepts of static dataflow ma-
chines that can be used by reconfigurable computing architectures. We introduce 
some data-driven reconfigurable arrays and summarize techniques to map im-
perative software programs to those architectures, some of them being focus of 
current research work. In particular, we briefly present a novel technique for 
pipelining loops. Experiments with the technique confirm important improve-
ments over the use of conventional loop pipelining. Hence, the technique proves 
to be an efficient approach to map loops to coarse-grained reconfigurable archi-
tectures employing a static dataflow computational model 

1   Introduction 

Dataflow machines [1] have been promising to overcome the poor-support of parallel-
ism of von Neumann architectures since the early 70’s [2]. However, their envisaged 
use has been transcended by efforts on augmenting the parallel processing capabili-
ties of traditional processors (e.g., VLIW). There is now a strong believe that it will be 
very difficult to take full advantage of the Moore’s Law using traditional processor 
architectures. Since dataflow computing is a natural paradigm to process data streams, 
it is  a very promising solution for stream-based computations, which indeed are be-
coming increasingly important. Some researchers have already focused on synthesiz-
ing programs to ASICs  behaving in a static dataflow fashion [3]. One of the reasons is 
the avoidance of centralized control units, which is an ideated goal since the evidence 
that interconnection delays are becoming preponderating. 

Processor arrays, namely wavefront [4] and data-driven arrays [5], have been intro-
duced in the 80’s. They devised a scalable and effective fashion to directly support 
the dataflow computational model and have been revived by some reconfigurable 
architectures (e.g., KressArray [6]). The dataflow computing model has been used in 
signal processing and other applications. Recently, research efforts on dataflow com-
puting have been conducted (see, for instance, [7]), especially its usage in reconfigur-
able computing due to the fact that it naturally supports  computing in space. Asyn-
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chronous dataflow FPGAs (Field Programmable Gate Arrays) [8] and coarse-grained 
architectures with dataflow semantics (e.g., WaveScalar [9]) are focus of recent re-
search efforts with encouraging results. 

Coarse-grained reconfigurable architectures (see e.g., [10] for information on several 
architectures) are promising computing platforms . Some of them mix concepts of data-
driven arrays with the reconfiguration properties of the programmable logic devices 
(e.g., FPGAs). Two such examples are the KressArray [6] and the XPP [11]. Although 
using coarse-grained architectures significant speedups have been achieved, the ca-
pability to compile from a high-level imperative programming language, and to still 
achieving noticeable speedup impact, has not been fully proved, apart from results on 
mapping specific algorithms. One of the reasons is the reduced focus on researching 
reconfigurable architectures to unburden the compilation phases and to map more 
effectively some typical computational structures. 

This paper examines some of the most relevant characteristics of the reconfigurable 
architectures, operating under the dataflow computational model, introduces some 
compilation techniques to target static dataflow reconfigurable architectures, illus-
trates some architecture operations to assist compilation, and shows a new loop pipe-
lining technique, named self loop pipelining (SLP). Moreover, this  paper also aims to 
address the following questions: 
? With respect to other reconfigurable architectures, are data-driven architectures a 

better target for software compilation? 
? What is the impact when using self loop pipelining? 

This paper is organized as follows. Next section introduces some of the coarse-
grained, data-driven, reconfigurable architectures. Section 3 briefly explains some 
architecture features to support computational structures, and section 4 summarizes 
compilation techniques for those architectures. Section 5 explains the SLP technique, 
and focuses  on the impact of the technique on a number of benchmarks. Finally, con-
cluding remarks and ongoing and future work issues are sketched in section 6. 

2 Data-driven Array Architectures 

Data-driven architectures usually use a handshaking protocol to control the data flow, 
in such a way that the execution of each functional unit (FU) starts when data is pre-
sent in the required inputs and next result can start to be computed or output (due to 
previous consumption or absence of output tokens). 

Specific hardware implementations can be constructed using FUs or regions of FUs 
behaving according to the static dataflow model (e.g., [3]). As has been aforemen-
tioned, another approach is the use of data-driven reconfigurable arrays (e.g., [11]), 
either working asynchronous, synchronously, or both. Note, however, that the static 
dataflow computing model [1] is the simplest to implement in VLSI. There is no strong 
evidence the complexity required by the dynamic dataflow model [1] is worth to be 
implemented (it permits to directly map recursive functions, e.g., [12]). 



A data-driven array mainly consists of a matrix of N? M PEs and interconnection re-
sources (as an example, see in Figure 1 a simple scheme of the XPP architecture [11]). 

Dataflow operations, which 
are implemented by PEs, 
include usual arithmetic and 
logic operations, and espe-
cial operations to deal with 
conditional branches. 

Conditional branches re-
quire BRANCH (SWITCH, 
DISTRIBUTOR, or DEMUX) 
and MERGE (JOIN, SELECT, 
or MUX) operations [1]. 
BRANCH is  used to route 
data items to one of the two 
outputs based on a control 
event (usually named con-
trol token). Standard 
MERGE operations do not 
have an enabling rule and 
just output the first data item 
present in one of the two 
inputs. There are, however, 

different implementations of MERGE. One MERGE uses a control signal to select be-
tween the two input data tokens and discards the data token (i.e., the token is con-
sumed but not copied to the output) not selected. According to the enabling rule, 
there are also different MERGE implementations. One only triggers the execution when 
the control token and the two data tokens are ready, the other one triggers the execu-
tion as soon as the control token and the selected data token are ready (this  type of 
evaluation is called lenient in [3]). 

Other special operators are specifically used to discard tokens, e.g., the T- and F-
Gates used in some dataflow machines, which copy input data to output when the 
control token has value “true” or when has value “false”, respectively [2]. 

Enhanced dataflow architectures integrate the semantics of imperative programming 
languages to manipulate array variables (e.g., load/store operations). Two strategies 
are used for load/store ordering: ordering conducted according to statically labeling of 
program references (e.g., WaveScalar [9]); ordering explicitly accomplished by control 
tokens (e.g., XPP [11]). When memories are located in special PEs, array structures are 
used to access them, and MERGE operations without discard are needed to multiplex 
data tokens (e.g., XPP). Other architectures use a data sequencer to stream data to the 
array (e.g., KressArray). 

The interconnections are responsible to flow data and control tokens. Their bit-
width is a property dependent on the granularity of the PE. Architectures with explicit 
lines for control events also include 1-bit width interconnections (e.g., XPP). Others 
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Fig. 1. Simple diagram of the PACT XPP architecture 
(notice that the picture does not show many architecture’s 
details). PAEs are elements of the architecture that can 
include an ALU or a memory. The PAEs with memories 
are located in the left and rightmost columns of the array. 
Each PAE also includes two more elements: FREG and 
BREG. These elements can perform special operations and 
can be used as pipeline stages 



use the data buses to flow either data or control tokens. Note that each interconnec-
tion implicitly has lines to implement the handshake mechanism. 

Each configuration defines the operations in the PEs and the interconnections 
among them. Additional units are needed to control array reconfiguration. For efficient 
support of the configuration flow, architectures may include on-chip configuration 
manager (CM) and configuration cache (CC), as is the case of the XPP. Such amenities 
enable efficient and effective implementations of large programs by using temporal 
partitioning, especially when the number of resources to map a given algorithm ex-
ceeds the array resources [13][14]. 

Table 1 illustrates some of the characteristics of four data-driven arrays: Function 
Processor [12], KressArray [6], WASMII [16], XPP [11], and WaveScalar [9]. The first 
three were introduced in the early 90’s. They have been pioneer work, as far as recon-
figurable computing is concerned. The XPP is a commercial architecture introduced in 
the late 90’s. The WaveScalar is one of the most recent research efforts attempting to 
build a decentralized dataflow machine and was introduced in the beginning of the 
2000’s. 

Among several distinguishing features, we choose the schemes used to support 
load/store operations, to map loops, some differences in the operations and intercon-
nect structures of the array and on the static or dynamic dataflow model of computa-
tion, as the main representative ones. Some of the arrays use special horizontal and 
vertical buses (e.g., XPP), others explicitly use PEs for routing and provide intercon-
nections between PEs in a mesh (e.g., KressArray) or in a hexagonal topology (e.g., 
Function Processor). Although some advantages and disadvantages of using different 
properties may be enumerated, a study of the impact of those properties, on, e.g., per-
formance, is still required. Notice, however, that with respect to reconfiguration sup-
port several differences could be sketched. 

Table 1. Data-driven array architectures. (1) on inputs of each cell (configured as FIFOs or 
LIFOs); (2) Input/output queues, to store data for different waves; (3) A data-sequencer 
streams data to array; (4) Explicit connections to on- and off-chip memories; (5) Load/store 
operations can be performed in any PE 

Architecture Dataflow 
Model 

Programming Language Special 
buffers 
in FUs? 

Memory 
semantics 

Function Processor [12] Dynamic Functional programming language Yes(1) No 
KressArray [6] Static ALE-X (C-based) No No(3) 
WASMII [16] Static Dataflow language (DFC) No No 
XPP [11] Static C or NML (native language) No Yes(4) 
WaveScalar [9] Dynamic C Yes(2)  Yes(5)  



3 Support to Computational Structures 

Besides work on using dataflow languages to program data-driven arrays [1], some 
efforts have been conducted to use imperative programming languages (e.g., [17]). 
However, lack of specific machine operations to effectively support high-level lan-
guages has been one of the major difficulties to attain more efficient compilation re-
sults . Although apparently tailored for computations alike the ones described in high-
level languages, coarse-grained reconfigurable architectures require further research 
both on compiler techniques and on operators support. For instance, special function-
alities can be directly supported by primitive operations. One of such features permits 
to implement a counter with a single PE of the architecture (as is the case in the XPP). 
The counter is one of the operators that truly assists  the mapping of high-level lan-
guages, specifically well-behaved FOR loops. 

Another example is the support of load/store operators in any PE of the architecture 
(e.g., WaveScalar), without needing to route, for instance, PEs  to a port  (e.g., with 
selection capability) of the specific memory cell. One or more buses can be provided to 
exclusively access memories. Special labeling of the array references in the code [9] 
and arbitration in order to preserve load/store ordering can be used. 

Another issue arises when, in a certain configuration, array resources need to be 
shared. This  needs special control, to route distinct sources by the correct order to the 
input of the cell being shared, and to route each data item being output from the 
shared cell to the correct destination. This  kind of structures can be implemented by 
SWITCH and MERGE operators and using control structures to generate the correct 
event sequences to accomplish the correct paths. The shared resources can be I/O 
ports for streaming data, which need to be steered to the correct PE (see Figure 2a). 
For this type of computations, two new operations can be ideated: SE-PAR and PAR-
SE. They perform continuously serial to parallel and parallel to serial operations on the 
input data, respectively. SE-PAR has one input (A) and two outputs (X and Y). The 
operator repeatedly alternates data on the input to either X and Y (see Figure 2b). 
PAR-SE has two inputs (A and B) and one output (X). It repeatedly outputs to X the 
inputs in A and B, in an alternating fashion. Both operators can really assist compila-
tion, fully decentralizes the needed control, without requiring additional resources. 
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Fig. 2. Routing sequentially each item in a data stream to a distinct destination. Use of 
SWITCH operators and control structures to create a different path for each item: (a) a central-
ized; (b) decentralized; (c) naturally decentralized by using SE-PAR operators 

MERGE operators with lenient behavior have been already used in [3]. They are im-
portant for conditional constructs , because they permit to continue computing as 



soon as data produced on the selected branch arrive (no need to wait for the data 
produced by the other branches). 

In this type of architectures pipelining is, as in other computational models, very 
important. Register stages are added to full balance different paths in order to achieve 
maximum throughput. When PEs with input/output FIFOs are used, pipeline balancing 
may in some cases be naturally achieved without adding extra pipeline stages (and 
thus sophisticated pipeline balancing algorithms  are not required). However, a study 
about the impact of FIFOs’ size on the achieved performance for a set of representa-
tive benchmarks needs to be carried out. FIFO queues are also important structures for 
some implementations, especially when a delay of some stages is needed. This can be 
accomplished using a number of simple FIFOs in sequence, but that may require sev-
eral PEs. Therefore, their direct support should be considered. 

The presented schemes can be directly supported by data-driven arrays to assist 
the mapping of computational structures described in high-level languages. Moreover, 
they enclose the necessity to experimentally evaluate some design decisions in order 
to design a new data-driven array. 

As a final remark, when compiling to reconfigurable hardware (see, for instance, 
[15]), a specific architecture to implement the input algorithm is synthesized. The archi-
tecture is usually composed of a data-path and a centralized control unit. Operations 
performed by the data-path are statically schedule and its execution is then controlled 
by the FSM (Finite State Machine) generated from the scheduling. Being a centralized 
control mechanism, it leads to difficulties to achieve the maximum performance, since 
the complexity to fully pipeline large examples and to tune the timing constraints to be 
used by place and route tools. Data-driven arrays do not need a centralized control 
unit, the operations are not statically schedule, and it is the data flow that dynamically 
imposes the execution of a particular operation (notice, however, that it is possible to 
statically define an order among operations using control tokens). Both data and con-
trol tokens flow concurrently through the array structures, and the implementation 
therefore naturally exposes fine-grain parallelism and multiple flows of control. 

4 Compiling to Dataflow Array Architectures 

Mapping computational structures to dataflow architectures is almost direct when 
straight-line code is input and each operation in the code can be directly implemented 
by a PE of the target architecture. The handshaking mechanism permits to abstract the 
mapping from the timing details associated when the computational structures are 
implemented using a data-path and a centralized control unit (timing-driven model). 

When mapping conditional constructs (such as if-then-else statements) MERGE 
and SWITCH operations can be used. These two operations can also be used to im-
plement loops. SWITCH operations are used to select the data flow through the loop 
structures (during iterations) or to path it to the structures beyond the loop (after loop 
completion). 



To map imperative programming languages to a dataflow machine, the input compu-
tational structures can be transformed to the Program Dependence Web (PDW) [18], a 
representation that extends the Static Single Assignment (SSA) form [19] and the Pro-
gram Dependence Graph (PDG) [20]. The PDW contains all the needed information for 
control-, data-, and demand-driven interpretation, and thus it can be used to generate 
the DFG akin to the required dataflow structure. 

Selection points are explicitly represented in the SSA-form by ? -functions. Those 
points can be directly implemented with MERGE operations with discard. The PDW 
uses  the Gated Single Assignment (GSA) to generate the control conditions. Instead 
of using only the SSA ? -functions, the PDW uses three types of functions (µ, ?, and 
? ). µ-functions are used to represent selection points between loop carried values and 
loop initializations (MERGE operation). ?-functions are used to control forward data 
flow (MERGE operation). Finally, ? -functions are used to control passage of values 
out of loop bodies (i.e., they are used to forward final data values after loop comple-
tion). ? -functions can be translated to SWITCH nodes. Operations to forward a copy 
or to discard the input data item may also be used (e.g., T- and F-gate). Note that as 
opposite to non dataflow modes, where operations using a certain assignment are 
scheduled to time steps where data are already available, here we have to ensure that 
only data that must be used arrive to destination. 

To enable the firing of some operations, control tokens are used, either directly (i.e., 
as a form of predicate execution controlled by guards) or as control mechanisms to 
cease the data flow. Architectures with PEs with firing rules enabled by special control 
inputs can almost directly implement predicated execution (e.g., XPP). When these 
type of firing rules are not directly supported, special operators can be added to en-
able/disable the data flow to destinations. Nevertheless, when speculative execution is 
used enable/disable firing is not needed as long as the data generated in paths not 
taken are discarded.  

In the end, some transformations on the DFG may be necessary to be ready for 
placement and routing on the data-driven array. Pipeline balancing is usually per-
formed during the place and route phase (e.g., XPP). 

Note however that for efficient compilation several optimizations are still required 
(see, for instance, [3]), such are the cases of software pipelining and elimination of 
redundant memory accesses (e.g., inter-iteration register promotion [21]). A novel 
dataflow specific optimization, called loop decoupling, has been introduced in [3]. It 
slices a loop into multiple independent loops that may run ahead from each other. To 
ensure that no data-dependences are violated they use a token generator operator. It 
dynamically controls the dependence distance between decoupled loop iterations. 

5 Self Loop Pipelining (SLP) 

One of the most efficient design optimizations is pipelining. Pipelining is a form of 
overlapping different steps of computations. The use of pipelining leads usually to 



significant performance improvements. With respect to loops, software pipelining is a 
fundamental technique to improve throughput. 

As far as dataflow computing is concerned, efficient loop execution has been 
achieved through dataflow software pipelining [22]. The approach uses balancing 
techniques to exploit maximum throughput. Balancing is achieved by the use of a cer-
tain number of register stages or FIFOs in each arc of the dataflow model. 

Consider the example in Figure 3a. Figure 3b shows a pipelined implementation. The 
CNT module represents a counter which starts at a given number, increments by a 
certain quantity until a certain limit is not exceeded. Using a data-driven model with 
handshaking, the counter only furnishes a new value if the previous one has already 
been consumed. 

To enable optimal software pipelining, full balancing of paths is required (see Figure 
3b), i.e., the counter indexing consecutive elements of the arrays A, B and C, requires 
that the two paths arriving to the destination memory where array C is located are 
balanced. The two paths are related to the operations computing the data items to be 
stored in the array C, and to the address generation structure. For balancing, elements 
behaving as simple registers have been inserted. 

Now we briefly introduce self loop pipelining (SLP), a novel technique for pipelin-
ing loops. Figure 3c shows the main concept. The original centralized counter, respon-
sible for the control iterations of the FOR loop, is duplicated and now two decentral-
ized counters are responsible for the loop control behavior. The counters are decoup-
led and synchronize indirectly due to the data flow. As is depicted, there are now two 
independent paths furnishing the index value (i) to access array elements. Note that 
another correct SLP implementation would use three counters (one for each memory). 
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Fig. 3. Loop pipelining on data-driven machines: (a) simple example - each array is mapped to a 
distinct memory; (b) traditional loop pipelining; (c) the proposed self loop pipelining technique. 
Rectangles in gray represent pipeline stages 

With SLP, loops are naturally executed in a pipelining fashion. The technique is 
based on duplicating the cyclic hardware structures responsible to loop control (in the 
example is implemented using a counter, but usually can be implemented using a 
hardware cyclic structure), in order they are autonomously executed, with synchroni-
zation being naturally achieved by the data flow. It can be applied to all kind of loops 
(DO-WHILE, WHILE, and FOR), and also to nested loop structures . Using SLP, inner-
most loops with conditional constructs  can also be pipelined without conservative 



loop pipelining implementations (which are usually based on the maximum critical path 
length of the loop body). The technique requires fewer resources for balancing (i.e., 
fewer registers or smaller FIFOs) and less sophisticated balancing efforts than previ-
ous software pipelining techniques. 

We have semi-automatically mapped some benchmarks to the XPP [11] using SLP. 
The architecture performs each PE operation and communicates data between ele-
ments (i.e., PEs or interconnection registers) in a single clock cycle. 

The results are now compared with loop pipelining implementations automatically 
achieved with the XPP-VC compiler [17]. When applying SLP to various DSP kernels  
(max, auto correlation, weighted vector sum, block move, gourad, and median) [23], 
performance improvements are achieved. With SLP we obtain from 1.2% to 68.4% 
fewer execution cycles, and even fewer needed PEs for most examples. 

The improvements achieved with SLP have origins in the more relaxed pipeline 
balancing requirements and in the unneeded matching of branches on conditional 
constructs to achieve the maximum throughput. 

Our ongoing work focuses on more experiments and on extending our compiler [15] 
to target static dataflow machines, including the use of the SLP technique. 

6 Conclusions 

This paper discusses some interesting reconfigurable array architectures computing in 
a dataflow fashion. Promising research efforts to compile imperative software lan-
guages to those kinds of architectures  are also introduced. One of the techniques is a 
novel form of loop pipelining, named self loop pipelining. 

Self loop pipelining can be used to pipeline loops in data-driven architectures 
based on the ready-acknowledge principle of operation. It involves replication of the 
hardware structures responsible for the control of loop iterations. The proposed tech-
nique has been applied for mapping a number of benchmarks to the XPP. Results , 
achieving performance improvements and fewer required resources, strongly confirm 
its importance. Ongoing and future work aims compilation techniques to automatically 
apply the technique. Future work should also embrace experiments with static dataflow 
models with input/output FIFOs in the functional units. 
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