
IV EURASIP Seminar on the Hardware Design of
DSP Systems

Program-to-hardware transformation and its use
in heterogenous high-performance DSP

Madhav P. Desai
Department of Electrical Engineering

Indian Institute of Technology – Bombay, Powai, Mumbai –
400076, INDIA

March 6, 2013



Overview

High-performance DSP can take advantage of several platforms:

◮ Processors such as multi-cores, GPUs: “easy” to use, but
power dissipation is an issue.

◮ Programmable hardware: lots of parallelism in principle,
potential power benefits, difficult to map algorithms to
platform. Can they beat power-performance characteristics of
processors?

◮ ASICs: lots of parallelism, high efficiency, will surely beat
power-performance characteristics of processors. Difficult to
design, and expensive to manufacture.

In terms of efficiency (performance/watt):

ASIC > > Processor, FPGA

Processor < ? > FPGA



Our work

◮ Make the path to ASIC/FPGA simpler for algorithm
developers.

◮ Develop (and use) a compiler flow for mapping algorithms to
hardware.

◮ Currently, we have a fully functional tool-chain which takes a
C program to VHDL. A multi-threaded C program (with
statically defined threads) can be easily mapped to a hardware
pipeline.

◮ We are now working on optimizations (will talk more about
that later) and applications.



How good is the compiler flow?

We have some experimental data (from 2010)1 :

◮ comparison in terms of area, delay and energy.

◮ for a set of programs, use standard commercial synthesis tools
to obtain an ASIC starting from the RTL generated by the
C-to-RTL flow.

◮ compare with processor implementations of the same set of
programs.

1S. Sahasrabuddhe, S. Subramanian, K. Ghosh, K. Arya, M.P. Desai, “A

C-to-RTL flow as an energy efficient alternative to embedded processors in

digital systems”, EUROMICRO 2010, Lille France.



How applicable is it?

We have some data from a practical use-scenario (from 2012)2:

◮ The Click2Netfpga toolchain (joint work with T. Rinta-Aho,
M. Karlstedt at Ericsson research) converts a C++ program
(generated by the Click modular router) to VHDL.

◮ Verified on FPGA, performance up to 50% of hand-coded
Verilog.

2T. Rinta-Aho, M. Karlstedt, M. P. Desai, “The Click2Netfpga toolchain”,

USENIX ATC 2012, Boston USA.



A system in AHIR

module memory
subsystem

pipe

◮ A system description consists of a collection of modules (a
module is similar to a function in a C program). The modules
communicate with the environment, with each other (through
calls, and through FIFO pipes), and with memory subsystems.



An AHIR module

An AHIR module description is of the form:

CP × DP × S

where CP represents control flow, DP represents data flow, and S

represents storage.



The control path CP

◮ The control path is modeled by a petri-net. Each transition is
associated with a symbol, which can either be an input
symbol or an output symbol.

◮ When a transition labeled by an input symbol is enabled, it
fires when the input symbol is received.

◮ When a transition labeled by an output symbol is enabled, it
fires eventually and emits the output symbol.

◮ The petri-net has a special structure, which guarantees that
CP is live and safe.



The data path DP

◮ A directed graph of operators.

◮ Each operator has a set of request symbols and a set of
acknowledge symbols. The operator responds to the arrival of
request symbols by eventually generating appropriate
acknowledge symbols.

◮ Operator library: all the standard arithmetic and logical
operators, as well as a multiplexor and load/store operators.



The storage subsystem S

◮ The storage subsystem connects to the load/store operators in
the datapath, and is required to eventually service the
load/store requests.

◮ Declared variables in the source program are grouped into
storage spaces.

◮ The storage spaces are determined by static reference analysis
(the system can have several distinct memory subsystems).

◮ The memory subsystems have a relaxed consistency model: all
accesses are time-stamped, and accesses to the same memory
location are finished in first-come-first-served order.



An example: the dot-product

Consider the program fragment:

float A[1024], B[1024];

float dotP = 0.0;

for(I=0; I < 1024; I++) {

dotP += A[I]*B[I];

}



Dot-product circuit
entry

exit

LB

LAINCR

FMUL

FADD

1023

CMP

EQ

0 0.0

I ndotP

dotP

nI

a*b

a

b

pr0pr1

lasr

lacr

lbsr

lbcr

iasr

iacr

msr

mcr

asr

p1a p0a

lasa

laca

lbsa

lbca

iasa

iaca

msa

mca

asa

aca

btaken

bnottaken

p1a p0a

iasa

iaca

lasa

laca

pr0pr1 pr1

iasr

iacr

lasr

lacr

lbsr

lbcr
lbsa

lbca

msr
msa mcr
mca

asr
asa

aca

acr
acr

csr
csa

csr

ccr
csa

cca

cca

ccr

Control
Petri−net

Data−path

brr

brr

bnottaken

btaken

to A
memory

to B
memory



Our C-to-VHDL flow
◮ The starting point is a program written in C

◮ restrictions: no cycles in call graph, and no function pointers.

◮ Use the CLANG front end to convert C program into LLVM
byte code (CDFG).

◮ Map the CDFG to an Ahir assembly program (using the Aa

language, in which parallelism can be expressed in a native
way).

◮ Map the Aa description to a virtual circuit consisting of
interacting AHIR modules.

◮ identify disjoint memory spaces.
◮ dependency analysis to maximize parallelism in straight-line

code.

◮ Map the virtual circuit to VHDL.
◮ identify arbiter-less resource sharing opportunities to reduce

hardware cost.
◮ instantiate the system: modules with their control and

data-paths, the inter-module link layer to handle calls, the
memory subsystem.



Our C-to-VHDL flow

AHIR flow

C

clang

llvm−byte−code

llvm2aa

Aa code

Aa libraries

Aa2vC

vc code

vc2vhdl

directives

VHDL code



Mapping to VHDL

◮ A synchronous, single clock, positive edge-triggered paradigm
is used.

◮ Transitions are coded as pulses which are sampled high by one
clock edge.

◮ Only join transitions need flip-flops for their implementation.
Other elements are purely combinational in nature, and in
many cases, can be optimized away.

◮ The datapath is mapped to an equivalent VHDL netlist
constructed using a library of operators. When a set of
operations shares a single operator, input multiplexors and
output demultiplexors are introduced.

◮ The memory subsystem is implemented using multiple banks,
and can offer multiple ports (performance-cost tradeoff).



Experimental Evaluation 1

◮ Select a range of programs
◮ A5 (stream cipher), AES encryption, Red-black Trees

(data-structure), Linpack (LU factorization), Fast-Fourier
Transform (FFT).

◮ Using the C-to-VHDL flow, map each program to RTL. The
run-time for mapping is neglible in all cases (less than a
minute).

◮ Use standard synthesis tools (Synopsys Design Compiler,
Cadence SOC encounter) to implement ASIC from RTL (we
use the 180nm TSMC CMOS process, with OSU standard cell
libraries). Extract area, delay and energy numbers for the
implemented ASIC.

◮ Operators are not pipelined or optimized in any fashion.

◮ Run each program on a processor based platform (we use the
Intel Atom N270 as a reference). Extract area, delay, energy
numbers using the processor data sheet.

◮ Compare the ASIC numbers with the processor numbers.



Comparison of normalized (to 45nm) C-to-VHDL circuits
with 45nm processor

Table: Area/Delay/Power/Energy RATIOS (processor values relative to
the scaled C-to-RTL circuit values)

Area Freq Delay Power Energy

A5/1 275.8 5.6 1.7 68.5 116.6

AES 61.5 5.6 0.34 14.8 4.9

FFT 78.4 9.6 0.57 52.6 30.3

LPK 14.8 9.6 0.84 18.3 15.3

RBT 22.2 9.6 0.15 32.7 4.7



Analysis

◮ The C-to-RTL circuits are between 4.7X and 116X more
energy efficient than the processor.

◮ The processor delays are lower than those of the C-to-RTL
circuit in most cases (except for A5) but the difference is less
than one order of magnitude in all cases.

◮ pipelining of operators and retiming of the C-to-RTL circuits
should reduce this gap.

For single-threaded applications, the C-to-RTL circuits have much
better energy efficiency than the processor, but have lower
performance than the processor.

Update: Loop optimizations seem to be very useful for improving
single thread performance (we will talk about this later).



Experimental Evaluation 2: Click2Netfpga
This work is a joint effort with Teemu Rinta Aho and Mika
Karlstedt at Ericsson Research, and will be presented at the
USENIX ATC 2012 (Boston).

◮ Click is a modular framework for describing networking devices
(e.g. routers, classifiers etc.). A Click description is converted
to C++ code, which can then be compiled and executed.

◮ The Click2Netfpga tool-chain takes Click-generated C++
code and produces VHDL which can be mapped to the
Stanford NetFPGA card and validated in real-time.

◮ The Click2llvm front-end generates LLVM modules (which
form a pipeline) from the C++ code.

◮ The AHIR tool flow maps the LLVM modules to a hardware
pipeline.

◮ A router generated in this manner gives up to 50% of the
performance of a reference (hand-coded Verilog) design.

Update: Loop optimizations should reduce the gap between
hand-designed and compiler generated hardware (will talk about
this later).



Trends

◮ On purely sequential code, the hardware that is generated
consumes substantially less energy than a processor running
the same code. Performance of single-threaded hardware
needs to improve.

◮ For processing pipelines inferred from application specific
C++ code, the performance is upto 50% of hand-coded
Verilog. The performance gap needs attention, but 50% of
hand-coded is “not bad”.

Offers a viable option to the system designer (in addition to the
use of embedded processors and custom hardware).



Optimizations: loop-pipelining

Clearly, there is scope for improvement. The most critical problem
in improving single-thread performance is the inner loop.

float A[1024], B[1024];

float dotP = 0.0;

for(I=0; I < 1024; I++) {

dotP += A[I]*B[I];

}

Execute multiple-iterations of a loop whenever possible.



Dynamic loop-pipelining

In an AHIR system, loop-pipelining can be managed if the
control-path can maintain dependencies across loops:

◮ Fk → Fk+1 for all operations F , for all k .

◮ If G depends on F , then Fk → Gk → Fk+1.

◮ If P ,Q are memory operations with an explicit dependency
(WAR, RAW, WAW), then Pk → Qk → Pk+1 → Qk+1.



Modified control-path for dynamic loop-pipelining
entry

pr0pr1

lasr

lacr

lbsr

lbcr

iasr

iacr

msr

mcr

asr

p1a p0a

lasa

laca

lbsa

lbca

iasa

iaca

msa

mca

asa

aca

btaken

bnottaken

acr

csr
csa

cca

ccr

Control
Petri−net

brr

Loop terminator

loop−taken loop
not
taken

loop−body
exit

loop−exit



Impact of dynamic loop-pipelining on single-threads

We looked at some simple, but important examples:

◮ Dot-product.

◮ FFT.

◮ Matrix-multiply.

In each case, single-threaded performance improvements were
measured. Number of FP adders and multipliers used = 1 of each.



Impact of loop-optimizations on the 64-point dot-product

For the 64-point dot-product (time/area numbers taken from
FPGA logic synthesis targeting a Xilinx Virtex-6):

plain pipelined unrolled unrolled

and

pipelined

Cycles 4071 1874 1894 582

LUTs 4288 5195 4809 7344

FFs 3799 4345 4378 5911

Freq.(MHz) 199.7 199.7 199.7 199.7

Best case FLOPS/cycle = 127/582 = 0.22.



Impact of loop-optimizations on the 64-point FFT

For a single stage of the 64-point FFT (32 butterflies, 300 FP ops).

plain pipelined unrolled unrolled

and

pipelined

Cycles 4151 2885 3110 1064

LUTs 12155 23139 16032 37831

FFs 11955 18632 15299 28698

Freq.(MHz) 186.9 164.1 186.9 164.1

Best case FP-ops/cycle = 300/1064 = 0.3.



Impact of loop-optimizations on the 16x16 matrix-multiply

Here, some aggressive loop-unrolling was used.

plain pipelined unrolled unrolled

and

pipelined

Cycles 161K 77K 13K 7810

LUTs 6323 9408 16032 31744

FFs 6974 8818 15299 21060

Freq.(MHz) 199.7 199.7 186 164.1

Best case FLOPS/cycle = 7936/7810 =1.01.



Observations

◮ Excellent performance improvement with loop-pipelining and
unrolling.

◮ Single-threaded hardware performance is pretty OK.
◮ BUT: resource utilization levels need to be improved (anything

above 50% is reasonable).
◮ Main cause is latency in non-parallel code (Amdahl’s law).

This effect can be reduced by reducing latency in the logic (in
progress).

◮ As the problem size is increased, utilization levels tend to
increase.

◮ In practice, we will need to use multiple threads to exploit
advantages of hardware relative to the processor.



Future directions for our research

◮ Applications: signal processing (image/multi-media),
cryptology, CFD, Databases etc.

◮ More optimizations: latency reduction in non-parallel paths.

◮ Algorithm-to-ASIC.

◮ OpenMP, OpenCL support.



Conclusion

The AHIR flow is open-source. If you wish to try it out, please get
in touch with me: madhav@ee.iitb.ac.in
Thank you!


