
AHIR
A competitive pathway from high-level
programs to hardware specifications.

Sameer D. Sahasrabuddhe
Advisors:

Prof. Kavi Arya (CSE)
Prof. Madhav P. Desai (EE)

IIT Bombay

August 24th, 2009



High-level Synthesis

Translating a program to hardware.
I Reduce dependence on hardware design skills

I Programs specify the behaviour of the circuit.
I “Even programmers” can create hardware.

I Simplify verification
I Generated RTL is correct by construction.
I Verify the program instead of the generated RTL.

I Faster design flow.
I Design large systems within manageable design costs.

1 of 47



A competitive high-level synthesis flow
I Independent of the input programming language.
I Produce hardware that is provably correct.
I Produce efficient hardware.
I Scale to very large systems.

2 of 47



Problem
Translating behaviour to structure.

I The input is an algorithm.
I The output is a hardware description.

Solution
Introduce an intermediate representation.

I Hides low-level details.
I Target for compiling the high-level program.

I Exposes information relevant to synthesis.
I A structure that implements the behaviour.

3 of 47



Control Data Flow Graph (CDFG)

I Traditionally used as an IR for high-level synthesis.
I Control and data are expressed in a single graph.

Decoupled control and data.

I Separately implement the two components.
I Scalable to large programs.

I Separation of resource from computation.
I New optimisations that work across modules.

4 of 47



AHIR: A Hardware Intermediate Representation

I Orthogonal factorisation of the program
I Control × Data × Storage

I Special petri-net class that supports scalable analysis.
I Request–Acknowledge handshakes.

I One-sided delay constraints.
I Independent memory subsystem.

5 of 47



High-level Synthesis with AHIR

I CDFG as an intermediate step.
I The generated AHIR is equivalent to the input CDFG.

I Supports scalable optimisation.
I Arbiterless sharing.

I Routine translation to hardware circuits.
I Demonstrated on a diverse set of applications.
I Competitive with embedded processors.
I Potentially get very close to hand-crafted circuits.

6 of 47



Outline

AHIR

Compiler Flow

Arbiterless Sharing

Implementation and Results

7 of 47



An AHIR Module

8 of 47



An AHIR system

Call-graph Modules

9 of 47



Handshakes

10 of 47



Timing constraints

d5 ≤ d0 + d1 + d3

d2 ≤ d3 + d4 + d0

11 of 47



Control-path as a petri-net

I A general petri-net can be arbitrarily complex.
I We need a subclass that is:

I live and safe
I easy to analyse
I not restrictive

I Type-2 petri-net

12 of 47



Type-2 petri-nets

Token Preserving Region: a connected
subgraph of a petri-net:

I Has a unique entry and a unique exit.
I No place marked in the initial marking.
I Connecting a marked place results in a

live and safe petri-net.

Type-1 Petri-net: Created from a TPR.
Type-2 Petri-net: A subset where the TPR is constructed using
specific rules.

13 of 47



Type-2 production rules

Primitive Series Forks Branches

Parallel merges

14 of 47



Type-2 production rules

Primitive

Series Forks Branches

Parallel merges

14 of 47



Type-2 production rules

Primitive Series

Forks Branches

Parallel merges

14 of 47



Type-2 production rules

Primitive Series Forks

Branches

Parallel merges

14 of 47



Type-2 production rules

Primitive Series Forks Branches

Parallel merges

14 of 47



Type-2 production rules

Primitive Series Forks Branches

Parallel merges

14 of 47



Type-2 construction

15 of 47



Type-2 construction

15 of 47



Type-2 construction

15 of 47



Outline

AHIR

Compiler Flow

Arbiterless Sharing

Implementation and Results

16 of 47



Compiler flow
Static Single Assignment (SSA)

d = m + n;
b = m - n;
if (b > 0) {
a = b + c;
d = e + a;

}
x = d + 2;

Sample program in C

A1 = m1 + n1;
S1 = m1 - n1;
C1: if (S1 > 0) {
A2 = S1 + c1;
A3 = e1 + A2;

}
M = φ(A1, A3);
A4 = M + 2;

SSA form

17 of 47



Compiler flow
Control Data Flow Graphs (CDFG)

A1 = m1 + n1;
S1 = m1 - n1;
C1: if (S1 > 0) {
A2 = S1 + c1;
A3 = e1 + A2;

}
M = φ(A1, A3);
A4 = M + 2;

SSA form Control Data Flow Graph

18 of 47



Control-path and data-path in AHIR

CDFG Control Path Data Path

19 of 47



Construction

G −→ A
Each element in G is replaced with an equivalent AHIR
fragment in A.

Multiplexer node AHIR fragment

20 of 47



Construction

G −→ A
Each element in G is replaced with an equivalent AHIR
fragment in A.

A is equivalent to G
For an initial state X

SG(X ): Possible sequences of operations in G.
SA(X ): Possible sequences of operations in A.

One-to-one correspondence between sets SG(X ) and SA(X ).
I No loss of information when translating a CDFG to AHIR.

20 of 47



Equivalence

Fragments in A correctly implement the elements in G.

Sequences in A are included in the sequences in G.

21 of 47



Equivalence

Elements in G′ correctly implement fragments in A.

Sequences in G′ are included in the sequences in A.

21 of 47



Equivalence

G′ is isomorphic to G.

A is equivalent to G.

21 of 47



Reconstruction using labels

Multiplexer AHIR fragment

Labelled −→ Labelled −→ Labelled
CDFG G AHIR spec A CDFG G′

22 of 47



Reconstruction using labels

Multiplexer AHIR fragment

Labelled −→ Labelled −→ Labelled
CDFG G AHIR spec A CDFG G′

22 of 47



Outline

AHIR

Compiler Flow

Arbiterless Sharing

Implementation and Results

23 of 47



Arbiterless sharing

24 of 47



Compatible operations
Two operations are compatible if they do not overlap in time.

I Compatibility in terms of paths in a Type-2 petri-net.
I A labelling scheme to determine compatibility.
I An efficient graphical representation for labels.
I A linear-time algorithm to check for compatible labels.

25 of 47



Compatible operations
Two operations are compatible if they do not overlap in time.

I Compatibility in terms of paths in a Type-2 petri-net.

I A labelling scheme to determine compatibility.
I An efficient graphical representation for labels.
I A linear-time algorithm to check for compatible labels.

25 of 47



Compatible operations
Two operations are compatible if they do not overlap in time.

I Compatibility in terms of paths in a Type-2 petri-net.
I A labelling scheme to determine compatibility.

I An efficient graphical representation for labels.
I A linear-time algorithm to check for compatible labels.

25 of 47



Compatible operations
Two operations are compatible if they do not overlap in time.

I Compatibility in terms of paths in a Type-2 petri-net.
I A labelling scheme to determine compatibility.
I An efficient graphical representation for labels.

I A linear-time algorithm to check for compatible labels.

25 of 47



Compatible operations
Two operations are compatible if they do not overlap in time.

I Compatibility in terms of paths in a Type-2 petri-net.
I A labelling scheme to determine compatibility.
I An efficient graphical representation for labels.
I A linear-time algorithm to check for compatible labels.

25 of 47



Compatible operations

Control Path Data Path

26 of 47



Compatibility in a Type-2 Petri-net

Two elements e1 and e2 in a Type-2 petri-net are compatible if
and only if one of the following is true:

I The smallest region R that contains both of them is not a
fork region.

I R is a fork region, but there is a path in R that passes
through regions both e1 and e2.

27 of 47



Compatibility in a Type-2 Petri-net

Two elements e1 and e2 in a Type-2 petri-net are compatible if
and only if one of the following is true:

I The smallest region R that contains both of them is not a
fork region.

I R is a fork region, but there is a path in R that passes
through regions both e1 and e2.

27 of 47



Labelling scheme

I Symbolic execution of the petri-net.
I Trace the influence of forks and joins.

28 of 47



Labels at a fork

29 of 47



Labels at a fork

29 of 47



Labels at a join

30 of 47



Labels

I A label is a set of sequences of label elements.
I A label element is a 3-tuple:

(
f , k(f ), i

)
f : fork identifier

k(f ) : fan-out of the fork f
i : index into the fan-out of the fork

31 of 47



Label Operations

32 of 47



Compatibility of labels
Two operations in a Type-2 petri-net, with labels L1 and L2
respectively, are compatible if and only if the labels L1 and L2
are compatible.

33 of 47



Complexity

I The size of a compatibility label is exponential.
I Comparison of two labels is expensive.

The Label Representation Graph (LRG)

I Nodes represent labels.
I Edges represent the construction of labels.
I The number of nodes is less than the number of elements

in the Type-2 petri-nets.
I A linear-time algorithm to determine compatibility.

34 of 47



LRG Construction

Labelled edges at a fork

35 of 47



LRG Construction

Unlabelled edges at a join

35 of 47



LRG Construction

Reduction at a join

35 of 47



An example LRG

36 of 47



Compatibility using the LRG
Two labels L1 and L2 are compatible if and only if the
corresponding nodes u and v in the LRG are compatible.

Complexity

I The number of nodes in the LRG is much less than the
number of operations in the control-path.

I DFS-based algorithm to check a pair of nodes in the LRG.

37 of 47



Compatibility using the LRG
Two labels L1 and L2 are compatible if and only if the
corresponding nodes u and v in the LRG are compatible.

Complexity

I The number of nodes in the LRG is much less than the
number of operations in the control-path.

I DFS-based algorithm to check a pair of nodes in the LRG.

37 of 47



Outline

AHIR

Compiler Flow

Arbiterless Sharing

Implementation and Results

38 of 47



Current Implementation

A complete flow from C to synthesisable VHDL using LLVM.
I 32-bit integers, single precision floats.
I Pointers, structures, arrays.
I Fixed number of arguments in function calls.
I Dynamic memory allocation.

Conceivable, but not implemented:
I Recursion.
I Function pointers.
I I/O ports.
I Variable number of arguments in function calls.
I Dynamically loaded libraries.

39 of 47



Synthesisable VHDL

I Clocked implementation using a predefined library.
I Asynchronous control-path and link-layer.
I Synchronous data-path operators

I All operations take one clock cycle.
I Separate memory subsystem

I Multiple load/store ports.
I Unspecified number of clock cycles.

40 of 47



Examples used

I A5/1 stream cipher∗

I AES block cipher∗

I FFT
I Linpack
I Red-Black Trees

The same source code was run on a processor, and also
synthesised to hardware.

∗Based on work done by Prakalp Somawanshi, 2008 41 of 47



Arbiterless sharing
FPGA implementation (Xilinx Virtex II)

Performance / Area (Hz per slice)

Example Gain (%)
A5/1 15
AES 126
FFT 97
RBT 191
LPK 36

42 of 47



Throughput / Area
FPGA implementation (Xilinx Virtex II)

Comparison with Pentium IV and hand-crafted RTL

 0.0001

 0.01

 1

 100

 10000

 1e+06

A5/1 AES FFT LPK RBT

P-4
AHIR

RTL

43 of 47



Throughput / Area
Comparison with processors

 1

 10

 100

 1000

A5/1 AES FFT LPK RBT

410

10.3
7

2.34

6.95

FPGA v/s Intel P-IV

 1

 10

 100

 1000

A5/1 AES FFT LPK RBT

429

20.5

49.1

12.4

3.22

ASIC v/s Intel Atom N270∗

∗Based on work done by Sreenivas S. and Kunal Ghosh, 2009 44 of 47



Energy
ASIC v/s Intel Atom N270

 1

 10

 100

 1000

A5/1 AES FFT LPK RBT

487

22.2

120
69.4

21.2

 1

 10

 100

 1000

A5/1 AES FFT LPK RBT

873

7.41

75.4
57.9

3.07

Energy
(performance per watt)

Energy × Delay

45 of 47



Conclusion

Established a high-level synthesis flow.
1. Supports a large class of programming languages.
2. Eliminates verification

I Generated circuits are correct by construction.
3. Supports scalable optimisations.

I Orthogonal factoring into control, data and storage.
I Static analysis that exploits the structure of the petri-net.

4. Compares favourably with embedded processors.
I Throughput / Area
I Energy
I Energy × Delay

46 of 47



Future work
Getting close to hand-crafted hardware.

I Efficient hardware
I Better operators
I Hardware reuse

I Routing overheads
I Sharing registers

I System-level parallelisation and pipe-lining
I Support for “better” languages

I System-C
I Esterel
I Functional programming languages

I Customised memory subsystem
I Relation between ports, banks and addresses
I Memory access information available in the software phase.
I Analyse traces for run-time access patterns

47 of 47



Thank You.



Compatibility and labels

A simple fork

x ∈ L
x .(f ,2,0) ∈ L1
x .(f ,2,1) ∈ L2



Compatibility and labels

Two forks in series

x ∈ L
x .(f ,2,0) ∈ L1
x .(g,2,0) ∈ L2



Compatibility and labels

Overlapped forks

x ∈ L
x .(f ,2,0) ∈ L1
x .(f ,2,1), ∈ L2

x .(f ,2,0).(g,2,1)



Compatible Labels

Definition: Two labels L1 and L2 are compatible if and only if
there exist sequences l1 ∈ L1 and l2 ∈ L2 where one of the
following is true:

1. l1 and l2 are equal.
2. One of them is a prefix of the other.

I x .(f ,2,0) and x .(f ,2,0).(g,2,1)

3. The elements that occur in them just after the longest
common prefix disagree on the forks.

I x .(f ,2,0).(h,2,1) and x .(f ,2,0).(g,2,1)



Examples

Compatible pairs:
1. I (f ,2,0)

I (f ,2,0)

2. I (f ,2,0)
I (f ,2,0).(g,2,1)

3. I (f ,2,0).(h,2,1)
I (f ,2,0).(g,2,1)

Incompatible pairs:
1. I (f ,2,0)

I (f ,2,1)

2. I (f ,2,0)
I (f ,2,1).(g,2,1)

3. I (f ,2,0).(g,2,0)
I (f ,2,0).(g,2,1)



BACK



Compatibility using the LRG

Definition: Two nodes u and v in the Label Representation
Graph are compatible if and only if one of the following is true:

1. There is a path between u and v .
2. They are reachable from a common ancestor a in the LRG

along paths such that one of the following is true:
2.1 One or both paths begin with an unlabelled edge.
2.2 The labels on the first edges in the paths indicate different

forks.



Compatibility cover



BACK



AHIR v/s Atom

Area Freq Delay Power Energy
E×D

(mm2) (MHz) (ms) (mW) (µJ)
A5/1-Atom 25 1600 0.12µs 2500 298.44 nJ 35.63
A5/1-AHIR 0.10 285 0.07µs 9.22 0.61 nJ 0.04
AES-Atom 25 1600 0.036 2500 89.362 3.194
AES-AHIR 0.41 285 0.107 37.56 4.023 0.431
FFT-Atom 25 1600 0.022 2500 55.64 1.238
FFT-AHIR 0.32 180 0.035 13.11 0.464 0.016
LPK-Atom 25 1600 7.90 2500 19740 155875
LPK-AHIR 1.69 165 9.42 30.33 285 2691
RBT-Atom 25 1600 0.36 2500 891.89 318.19
RBT-AHIR 1.13 165 2.47 17.00 42.01 103.80


	Introduction
	AHIR
	Compiler Flow
	Arbiterless Sharing
	Compatibility
	Compatibility Labels
	Label Representation Graph

	Implementation and Results
	

