
An introduction to the Aa language

Madhav P. Desai

March 8, 2018



The Aa language

I Serves as an intermediate representation in the AHIR-V2 flow.

I Control-flow (imperative) language with support for
parallelism and branching.



A simple program in Aa

$module [maxOfTwo] $in (a: $uint<32> b:$uint<32>)

$out (c: $uint<32>) $is

{

c := ( $mux (a > b) a b )

}



Program-structure in Aa

aA_Program := ( aA_Module |

aA_Object_Declaration |

aA_Named_Type_Declaration)*



A module

aA_Module := $module [identifier]

$in ( aA_Module_Args)

$out (aA_Module_Args)

{

aA_Object_Declaration*

aA_Atomic_Statement_Sequence

}



Aa Types
Aa provides a comprehensive set of types.

I Unsigned integers

$uint<1>, $uint<32> etc.

I Signed integers

$int<1>, $int<32> etc.

I Sized floats

$float<8,32>, $float<11,52>

I Pointers :

$pointer<$uint<32>> etc..

I Arrays:

$array[32][4] $of $uint<32> etc.

I Records:

$record $uint<32> $uint<1>

I Named Records:

$record [MyRec] $pointer<MyRec>) $uint<32>



Aa Objects

I Storage objects:

$storage A: $array [1024] $of $uint<32>

I Constant objects:

$constant A: $uint<4> := _b0011

$constant B: $uint<32> := _hf0f0f0f0

$constant C: $float<8,23> := _f2.3465e+0

I Pipe objects:

$pipe A: $uint<32> $depth 4

$lifo $pipe B: $uint<8> $depth 8

$noblock $pipe C: $uint<39> $depth 2

I Implicit objects: these are defined by statements:

a := (A + B)

They are also called static-single-assignment or SSA variables.

I Interface objects: Inputs and outputs of modules are treated
like SSA variables. Inputs cannot be written into.



Aa Storage Objects

I Will be implemented in memory spaces.

I Access to a storage object takes 3+ cycles.

I Should use sparingly.



Aa Pipe Objects

I Blocking in nature: provide synchronization mechanism.

I FIFO or LIFO data transfer within and across modules.

I Non-blocking pipes: return a 0 if read is attempted on an
empty pipe.



Aa SSA Objects

I Implemented as registers.

I Fast access (immediate read, single cycle write).

I Should use as often as possible.

I Note that the type of these objects is inferred from the
context in which they appear.

a := (A + B)

A and B must have the same type, and the type of a is
inferred to be the type of A.



Aa Expressions

I Constants:

_b00011

_habf1

I Simple references:

a

I Array references:

a[0][1]

a[(I+1)][J][K]

I Unary expressions:

(<op> expr)

e.g. (~ a)

I Binary expressions:

(a <op> B)

<op> can be +,-,*,/,<<,>>,|,&,~|,~&,^,~^

==,!=,>,>=,<,<=



Aa More Expressions

I Ternary expressions:

($mux <test-expr> <if-expr> <else-expr> )

e.g. ($mux (a > 0) (b+1) (b-1))

I Concatenation expression:

(a && b)

I Bit-select expression:

(a [] I)

I Address-of expression:

@(a)

@(a[I])

I Pointer-dereference expression:

->(ptr)

If it appears on the left-hand-side, it is a store, else it is a load.



Aa Statements

I Atomic statements.

I non-Atomic statements.



Atomic Aa Statements

I Simple statements.

I Block statements.



Aa Atomic Simple Statements

I Assignment statements:

target-expression := source_expression

e.g.

a := (b + c)

I Call statements:

$call fpadd32 (A B) (C)



Aa Atomic Block Statements

I Series-block statements.

I Parallel-block statements.

I Branch-block statements.

I Fork-block statements.



Aa Series Block Statements

$seriesblock [SB] {

$storage a: $uint<32>

a := (b + c)

d := (a + e)

} (d => D)

Control-flow is sequential: statements are executed in order, token
leaves statement after last statement finishes. A module body is

also a series-block.



Aa Parallel Block Statements

$parallelblock [PB] {

a := (b + c)

p := (q + r)

}

Control-flow: both statements started in parallel, token leaves
statement after both statements have finished.



Aa Branch Block Statements

$branchblock [BB] {

$merge $entry loopback

$phi I := ($bitcast($uint<32>) 0) $on $entry

NI $on loopback

$endmerge

a[I] := (b[I] + c[I])

NI := (I+1)

$if (NI < 16) $then

$place [loopback]

$endif

}

Control-flow: sequential, but control flow is altered by merge,
place, if and switch statements.



Aa Phi Statements

I Can appear only in branch blocks, and within merge
statements.

I Indicate the action to be taken depending on how control got
to this statement.

I Example:

$phi I := ($bitcast($uint<32>) 0) $on $entry

NI $on loopback



Aa Do-Pipeline-While Statements

These are not atomic, and can occur only inside a branch-block.

$dopipeline $depth 7 $buffering 1 $fullrate

$merge $entry $loopback

$phi I := ($bitcast ($uint<32>) 0)

$on $entry

NI $on $loopback

$endmerge

a[I] := (b[I] + c[I])

NI := (I+1)

$while (I < 16)

Control-flow: sequential, controlled by the condition check. The
places $entry and $loopback are implicitly defined. When control
enters the do-while, the token gets placed in $entry and when
control loops-back from the condition check, the token gets placed
in $loopback. The compiler will pipeline the loop by keeping
$depth iterations alive.



Aa Fork Block Statements

$forkblock [FB] {

$seriesblock [S1] { ... }

$seriesblock [S2] { ... }

$join S1 S2 $fork

$seriesblock [S3] { ... }

$seriesblock [S4] { ... }

$endjoin

$join S3 S4 $endjoin

}

Control-flow: all statements will start in parallel, join-forks will
trigger new statements etc. Token exits block when all statements
finish.



Aa Volatile Statements

I If you do not want to use a register:

$volatile p := (q + r)

I p will not necessarily be implemented as a register. You can
only assume that p is equivalent to (q + r).

I Useful in describing combinational logic.



Aa Summary

I An Aa program consists of a collection of module descriptions
and object declarations.

I Each module is a sequence of statements.

I Statements can be simple or block-structured.

I Specific blocks allow branching, while others describe
parallelism.

I Objects in an Aa program can be FIFOs (pipes), storage or
implicitly inferred.

I Almost everything you can express in C can be expressed, but
we are closer to hardware.



Look at the FIR again


