
A competitive pathway from high-level programs
to hardware specifications

A thesis submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

by

Sameer D. Sahasrabuddhe
(Roll No. 02429002)

Under the guidance of

Prof. Kavi Arya
and

Prof. Madhav P. Desai

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY–BOMBAY

2009

Thesis Approval

The thesis entitled

A competitive pathway from high-level programs
to hardware specifications

by

Sameer D. Sahasrabuddhe
(Roll No. 02429002)

is approved for the degree of

Doctor of Philosophy

Examiner Examiner

Guide Co Guide

Chairman

Date:

Place:

Declaration

I declare that this written submission represents my ideas in my own words

and where others’ ideas or words have been included, I have adequately cited

and referenced the original sources. I also declare that I have adhered to all

principles of academic honesty and integrity and have not misrepresented or

fabricated or falsified any idea or data or fact or source in my submission. I

understand that any violation of the above will be cause for disciplinary action

by the Institute and can also evoke penal action from the sources which have

thus not been properly cited or from whom proper permission has not been

taken when needed.

Sameer D. Sahasrabuddhe
(Roll No. 02429002)

Date:

Place:

iii

Abstract

High-level synthesis is the process of generating hardware from high-level programs. An effec-
tive high-level synthesis flow can reduce the cost of designing hardware systems in two ways:
eliminating the need for verification of the circuits, and making hardware design accessible to
a large set of people.

We present a high-level synthesis flow that supports a large class of high-level program-
ming languages while providing a verifiable and scalable path to a hardware implementation.
The flow introduces an intermediate step between software and hardware compilation in the
form of an intermediate representation called AHIR[1]. This decouples the high-level issues
encountered when writing programs, from low-level issues in the hardware implementation.
We describe a translation method that always produces a correct AHIR specification from a
high-level program, thus eliminating the need for verification.

An AHIR specification is factorised into three components: control-flow, data-flow and
storage. The three components can be analysed and transformed separately without affecting
each other, enabling optimisations that can scale with the size of the circuit. We demonstrate this
with an optimisation that improves resource utilisation in the data-path using a static analysis
of the control-path. The specification is independent of implementation delays and can be
routinely mapped to hardware. Timing correctness can be guaranteed by satisfying a set of
single-sided delay constraints.

We conclude by comparing the performance of circuits generated from high-level pro-
grams using AHIR, with two extremes: the same programs running on a microprocessor, and
hand-crafted circuits that implement the equivalent behaviour. The generated circuits are com-
petitive with microprocessor implementations, but the performance is less than that of hand-
crafted circuits. This gap can be bridged by future work that leverages the factorisation intro-
duced in AHIR.

Key-words: High-level Synthesis, Electronic Design Automation, Intermediate Representa-
tion, Behavioural Synthesis, Systems Design

v

Contents

Abstract v

List of Tables xi

List of Figures xiii

1 Introduction 1
1.1 Our work . 2

1.1.1 Programming language independence 2
1.1.2 Correctness . 3
1.1.3 Easily verifiable implementations . 4
1.1.4 Scalability . 4

1.2 Related work . 4
1.2.1 Improvements over RTL . 4
1.2.2 Modified high-level languages . 5
1.2.3 High-level programs as hardware specifications 6

1.3 Organisation of the thesis . 7

2 AHIR 9
2.1 A module in AHIR . 9
2.2 Data-path . 10

2.2.1 External access . 11
2.2.2 Behaviour of a data-path node . 11

2.3 Control-path . 13
2.4 The Intra-module Link Layer . 14
2.5 Symbol Handshakes . 15

2.5.1 Delay Constraints . 15
2.6 The Inter-module Link Layer . 16
2.7 Execution model . 17
2.8 Petri-nets in the control-path . 18

2.8.1 Type-1 petri-nets and Token Preserving Regions (TPRs) 20
2.8.2 Type-2 Petri-nets and Standard TPRs 21

vii

CONTENTS

2.8.3 Parallel-merge region . 23
2.8.4 Hierarchical representation of a standard TPR 26
2.8.5 Algorithm to identify a Type-2 petri-net 26

2.9 Summary . 27

3 The Compilation Process 29
3.1 Static Single Assignment (SSA) . 30

3.1.1 The LLVM internal representation . 30
3.2 The CDFG representation . 31

3.2.1 Control edges . 32
3.2.2 Data edges . 33
3.2.3 Nodes . 33
3.2.4 The multiplexer node as an example 34
3.2.5 start and stop nodes . 34

3.3 Translating the LLVM IR to a CDFG . 36
3.3.1 CDFG Nodes . 36
3.3.2 Data edges . 37
3.3.3 Control edges . 37
3.3.4 start and stop nodes . 39

3.4 Generating AHIR from a CDFG . 40
3.4.1 An AHIR fragment . 41
3.4.2 The multiplexer node . 42
3.4.3 start and stop nodes . 44
3.4.4 CDFG edges . 45
3.4.5 Labelling scheme . 45
3.4.6 Connecting fragments . 46
3.4.7 Creating a Type-2 petri-net . 47
3.4.8 Piece-wise translation from CDFG to AHIR 48

3.5 Equivalence . 49
3.6 Summary . 53

4 Contention-free Reuse of Hardware 55
4.1 Compatible operations . 56

4.1.1 Compatibility in a Type-2 petri-net . 57
4.2 Labels to indicate compatibility . 58

4.2.1 Labelling scheme . 61
4.2.2 Labelling successors of a fork . 62
4.2.3 Labelling a join . 62

4.3 Concurrency encoded in labels . 64
4.3.1 Canonical form of a fork region . 65

viii

CONTENTS

4.3.2 Labelling in a canonical fork region 66
4.3.3 Labelling in a Type-2 petri-net . 69

4.4 Testing labels for compatibility . 71
4.5 A compact graph-based representation of labels 75

4.5.1 The label representation graph (LRG) 76
4.6 Construction of the LRG . 76

4.6.1 Labelling the successors of a fork . 76
4.6.2 Labelling a join . 77
4.6.3 Uniqueness of nodes . 79

4.7 Compatibility using the LRG . 80
4.7.1 Testing for compatibility . 82
4.7.2 Identifying sets of compatible operations 82

4.8 Summary . 84

5 Implementation and Results 85
5.1 Support for the C language . 86
5.2 Simulation and Synthesis . 87

5.2.1 Synthesisable VHDL implementation 88
5.2.2 Evaluation of generated circuits . 89

5.3 FPGA implementation . 89
5.3.1 Performance . 89
5.3.2 Static sharing of hardware . 90
5.3.3 A note on the implementation . 90
5.3.4 Results . 91

5.4 ASIC implementation . 96
5.5 Inference . 98

6 Conclusion and Future Work 99
6.1 Looking forward . 100

6.1.1 A universal design platform . 101
6.1.2 Hardware optimisations . 102
6.1.3 Memory subsystems . 103

A Implementation of a High-level Synthesis Flow using AHIR 105
A.1 Translating C to AHIR . 105

A.1.1 C to LLVM IR . 106
A.1.2 LLVM IR to AHIR . 107
A.1.3 Function calls . 107
A.1.4 AHIR Linker . 108

A.2 Synthesising AHIR . 110
A.2.1 Synchronous VHDL . 110

ix

CONTENTS

A.2.2 Operator reuse . 113
A.2.3 Scheduling and Allocation . 113

B An End-to-end Example 115
B.1 Expected input . 115
B.2 Source compiler . 116
B.3 AHIR-XML generator . 116
B.4 AHIR linker . 116
B.5 VHDL generator . 117

References 129

x

List of Tables

2.1 State table for a data-path multiplexer node. 13
2.2 The intra-module link layer. 14
2.3 Synchronous execution of an AHIR module. 18

3.1 State table for the CDFG multiplexer node. 35
3.2 State table for the start node. 35
3.3 State table for the stop node. 36

5.1 Synthesis results for Linpack. 91
5.2 Performance comparison for Linpack. 92
5.3 Synthesis results for Red-Black Trees. 92
5.4 Performance comparison for Red-Black Trees. 92
5.5 Synthesis results for FFT. 93
5.6 Performance comparison for 64-point FFT. 93
5.7 Synthesis results for A5/1 stream cipher. 94
5.8 Performance comparison for A5/1 stream cipher. 94
5.9 Synthesis results for AES block cipher. 95
5.10 Performance comparison for AES block cipher. 95
5.11 Comparison with the Intel Atom N270 . 97

xi

List of Figures

2.1 Call-graph of a program and the resulting AHIR system. 9
2.2 An AHIR module. 10
2.3 An AHIR Data-path. 10
2.4 Data-path node for a multiplexer. 12
2.5 An AHIR Control-path. 13
2.6 A symbol handshake. 15
2.7 Delays in an AHIR specification. 16
2.8 Arbiters in the inter-module link layer. 17
2.9 Building blocks in a petri-net. 19
2.10 A TPR and the corresponding Type-1 petri-net 20
2.11 Classification of Token Preserving Regions (TPRs). 20
2.12 Type-2 construction rules. 21
2.13 Synchronous pipeline in a Type-2 petri-net. 23
2.14 A sequence of Type-2 replacements. 23
2.15 Multiple φ-functions and the parallel-merge region. 24

3.1 A code fragment and its SSA form. 30
3.2 The LLVM internal representation. 31
3.3 A control data flow graph. 32
3.4 CDFG node for a multiplexer. 34
3.5 Translating an LLVM basic block to a CDFG fragment. 37
3.6 LLVM IR and the corresponding CDFG. 39
3.7 Translating a CDFG to AHIR. 40
3.8 An AHIR fragment. 41
3.9 AHIR fragment for a CDFG multiplexer node. 42
3.10 The interface of a multiplexer node . 43
3.11 AHIR fragment for the CDFG start node. 44
3.12 AHIR fragment for the CDFG stop node. 44
3.13 AHIR fragments for CDFG edges. 45
3.14 Connecting fragments . 47
3.15 Labelling in AHIR fragments. 47

xiii

LIST OF FIGURES

3.16 Completing the Type-2 petri-net. 48

4.1 Sharing a data-path operator. 56
4.2 Compatibility in a petri-net. 57
4.3 A labelled petri-net fragment. 59
4.4 Labelling successors of a fork. 62
4.5 Labelling at a join. 62
4.6 Associate join for a fork. 67
4.7 Label Representation Graph. 75
4.8 Labelling at a fork. 77
4.9 Labelling at a join. 77
4.10 Reductions at a join. 78
4.11 A cover generated for the example LRG. 84

5.1 Generating AHIR from a C program. 85
5.2 Generating SystemC and VHDL descriptions. 88
5.3 Performance comparison for the FPGA implementation 96
5.4 Comparison of AHIR circuits with the Intel Atom N270 97

6.1 Synchronous pipeline in a Type-2 petri-net. 102
6.2 A shared data-path. 103

A.1 Generating AHIR from a C program. 106
A.2 Translating AHIR to synthesisable VHDL RTL. 110
A.3 Data-path operator. 111
A.4 Control-path place. 111
A.5 Control-path transition. 112
A.6 A complete AHIR fragment. 113

B.1 Input C code. 118
B.2 LLVM byte-code. 119
B.3 XML format: Call-graph and Global variables 120
B.4 XML format: Components of an AHIR module. 121
B.5 XML format: Inter-module link layer (Omega) 122
B.6 XML format: Memory map . 122
B.7 VHDL format: A data-path entity. 123
B.8 VHDL format: A control-path entity. 124
B.9 VHDL format: The system entity. 125

xiv

“The Unix-nature is simple and empty. Because it is simple and empty, it
is more powerful than a typhoon.”
“Moving in accordance with the law of nature, it unfolds inexorably in
the minds of programmers, assimilating designs to its own nature. All
software that would compete with it must become like to it; empty, empty,
profoundly empty, perfectly void, hail!”

Master Foo Discourses on the Unix-Nature

xv

Chapter 1

Introduction
Digital VLSI platforms form a spectrum of products that offer a trade-off between good per-

formance and rapid deployment. On the one hand, Application Specific Integrated Circuits

(ASICs) are used for creating specialised high-performance implementations, and on the other

hand, microprocessors are used as a generic platform that allows rapid development and deploy-

ment of applications at the cost of performance. Other platforms fall between these extremes,

such as Field Programmable Gate Arrays (FPGAs), Structured ASICs[2], Field Programmable

Functional Arrays (FPFAs)[3], FPGA-ASIC hybrids[4] and reconfigurable processor cores[5].

This diversity in hardware platforms has created interesting opportunities for implement-

ing complex digital VLSI applications. But the design of large hardware systems is an expensive

venture due to the need for highly trained manpower, and the need to verify the system at every

step of the process. These costs can be reduced through high-level synthesis, the process of

generating hardware from high-level programs.

High-level synthesis starts with an executable specification, i.e., a representation of the

desired functionality in a machine-readable and simulatable form[6]. Such an executable spec-

ification can be in the form of a program written in a high-level programming language. The

executable specification is translated into a circuit implementation by a compiler flow that low-

ers the level of abstraction in stages.

The use of high-level programs as the starting point makes hardware design accessible to a

very large set of users. If the compiler is guaranteed to produce a correct implementation of the

input specification, the resulting hardware does not have to be verified. Only the behaviour of

the input specification has to be verified, which can be done using existing software verification

practises. This approach also fits in with the existing hardware design flow that starts with an

executable specifications that is translated manually to a hardware implementation.

1. Introduction

1.1 Our work

Current efforts in high-level synthesis have at least one of two important shortcomings: restric-

tions are imposed on the input language, or the abstraction is not sufficient enough to hide hard-

ware details. As a result, programmers are unable to use standard practises in writing programs

and the compiler is restricted in the scope of optimisations used on the generated hardware.

The main aim of our work is to explore the design of a high-level synthesis process that

preserves common practises in software programming while providing a verifiable and opti-

misable path to a hardware implementation. This requires a compiler flow that can generate

efficient circuits from complex high-level programs. Such a compiler flow must have the fol-

lowing features:

1. The flow should be independent of the programming language used.

2. The flow should guarantee a correct implementation of the specified behaviour.

3. The flow should support optimisations that can scale to very large systems.

We present a compiler flow that achieves this goal by introducing an intermediate step

between software and hardware compilation in the form of an intermediate representation called

AHIR[1]. This decouples the high-level issues encountered when writing programs from low-

level issues in the hardware implementation. We describe a translation method that always

produces a correct AHIR specification from a high-level program, thus eliminating the need for

verification.

An AHIR specification is factorised into three components: control-flow, data-flow and

storage. The three components can be analysed and transformed separately without affecting

each other, enabling optimisations that can scale with the size of the circuit. We demonstrate this

with an optimisation that improves resource utilisation in the data-path using a static analysis

of the control-path. The specification is independent of implementation delays and can be

routinely mapped to hardware. Timing correctness can be guaranteed by satisfying a set of

single-sided delay constraints.

1.1.1 Programming language independence

Software programming is an evolutionary process — typical software projects start off with an

aim to first correctly implement the intended application, and later evolve in terms of optimisa-

2

1.1. Our work

tions for performance. But these optimisations in the program body are always constrained by

the need for maintainability. This requires that the program should reflect higher-level abstrac-

tions so that the meaning is clear even at the cost of performance.

AHIR helps in this respect since it does not introduce any modifications or constraints

in the programming language itself. No assumptions are made about the underlying hardware

when mapping the high-level language to AHIR. Programming style is not affected by low-

level considerations such as impact on performance, costs, etc., other than the ones that are

commonly applicable in software programming.

Since the input language is not reinterpreted in any way, all optimisations normally per-

formed by the source level compiler remain available. This leverages all the existing work in

software compilation which is usually independent of the target platform. Such optimisations

can lead to significant improvements in performance since they are implemented at a higher

level where more information is available.

1.1.2 Correctness

Correctness is one of the cornerstones of effective design automation. If it can be shown that

a given high-level synthesis flow always produces a correct implementation, then the effort

required for verifying the implementation is eliminated. The only effort required is for the

functional verification of the input specification.

We show that our method produces an AHIR specification that is correct by construction.

The compiler translates an input C program to an AHIR specification using a CDFG as an in-

termediate step. The first step of translating the program to a CDFG is a routine one that does

not need to be verified separately. We show that in the second step, the generated AHIR specifi-

cation is equivalent to the CDFG and hence it is a correct implementation of the input program.

If the input C program correctly implements the intended algorithm, then the generated AHIR

specification also correctly implements that algorithm. The resulting hardware is also correct if

it satisfies the delay constraints defined in AHIR.

Any optimisation defined on AHIR must ensure that every transformation preserves the

behaviour specified by the input program. Since the original AHIR description is shown to

be correct by construction, every transformation must only ensure that the output description

correctly implements the input description. Such transformations can then be composed to

achieve desired optimisations, with the guarantee that the final circuit is also correct.

3

1. Introduction

1.1.3 Easily verifiable implementations

AHIR specifies a very basic set of delay constraints that ensure validity of data at every event in

the execution, as described in Section 2.5.1. When the delays in an implementation satisfy these

constraints, the implementation is guaranteed to be correct. In practise, it is easy to satisfy these

constraints by sufficiently padding the delays when implementing the control-data handshakes.

1.1.4 Scalability

Due to the factorised nature of AHIR, different components can be analysed and modified sep-

arately in order to optimise the resulting implementation. This factorisation makes it possible

to design efficient analyses and transformations that can scale with the size of the circuit. For

example, in Chapter 4, we describe a native optimisation in AHIR that uses a static analysis of

the control-path to improve the utilisation of resources in the data-path. The analysis used is

shown to be almost linear in complexity with respect to the size of the program.

1.2 Related work

A number of attempts have been made to create a path from high-level programming languages

to hardware descriptions. These can be loosely categorised as follows:

1.2.1 Improvements over RTL

Some efforts attempt to raise the abstraction in an RTL description in order to support higher-

level constructs. For example, Bluespec[7] describes the behaviour of a system in terms of

explicit state entities and guarded atomic actions. The control logic for the interaction of these

actions is synthesised automatically. The resulting hardware has been shown to be competitive

with hand-coded RTL.

But this is a tool meant for a hardware designer, not a programmer. An effort that proposes

a new language for hardware design introduces new requirements in the skills needed to use

that language. The user has to be aware of the components involved, and the low-level state

that is being manipulated by operations in the system. The language can be quite powerful in

expressing the architecture of the hardware, but the target user is a hardware designer who can

effectively utilise this expressive power.

4

1.2. Related work

1.2.2 Modified high-level languages

Some efforts extend existing programming languages and/or interpret them as hardware de-

scriptions. These systems essentially propose new programming languages that may be super-

ficially similar to the parent languages. But it becomes difficult to retain standard programming

practises in this setup — some of the common knowledge gained by programmers has to be

revaluated in this new use of the language.

The language SA-C[8] for example is a purely functional subset of the C programming

language. SA-C declares that variables represent values and not storage. Thus, pointers are not

allowed in SA-C, and information is passed by value. The language introduces new syntax to

work with arrays, which is especially powerful in expressing DSP algorithms.

But SA-C makes an a priori choice with respect to the programming paradigm used. Al-

though the syntax superficially represents an imperative language, the program must be de-

signed in a functional style. SA-C effectively creates a new language, and the programmer is

forced to revaluate existing programming practises within the scope of this modified language.

On the other hand, Handel-C[9] is a language that guarantees complete ISO-C compat-

ibility and further extends it to include features such as arbitrary-width data types, primitives

that specify parallel or sequential execution, thread synchronisation mechanisms, etc. These

features can prove very effective in describing the intended hardware.

An important property of Handel-C is that the compiler guarantees a cycle-accurate im-

plementation of every program, which facilitates verification. But this cycle-accurate nature

restricts the scope of optimisation, since the compiler cannot reorder or remove instructions.

As a result, the programmer must manually optimise sequences of instructions. This can be

an error-prone process, and opportunities could easily be missed simply because they were not

obvious to the programmer.

In both these examples, the focus is on the language used by the designer. The designer

is encouraged to use specific language features to describe the intended hardware, instead of

the compiler inferring hardware from the behaviour of the program. Thus, although both these

languages claim a relationship with C, they in fact represent completely different programming

styles, hidden behind a syntax that resembles C.

5

1. Introduction

1.2.3 High-level programs as hardware specifications

Some efforts simply use standard programming languages as a starting point that provides a

hardware specification rather than a description. This approach makes it easy for programmers

to write a hardware specification like any other program, while the compiler is free to auto-

matically infer a suitable implementation. Such an approach usually employs an intermediate

representation as a transition step from software to hardware.

For example, the Phoenix[10] project uses an intermediate representation called Pegasus[11]

for a compiler flow from C to hardware[12]. Pegasus has a data-flow architecture, where op-

erations use asynchronous handshakes to exchange data along data-flow edges. Control-flow

is represented as predicates associated with the operations. Special token flow edges are used

to represent dependences between memory operations. A description in Pegasus can be imple-

mented directly by translating each operation to a micropipeline stage. The compact nature of

Pegasus allows the compiler to natively implement a number of high-level transformations.

The SPARK[13] project uses an internal representation based on hierarchical task graphs

(HTG). Statements that have no control-flow between them are aggregated together into ba-

sic blocks. These basic-blocks are used in HTG nodes, that form hierarchical structures such

as branching and loops. This hierarchy captures all the information that is useful for high-

level transformations such as code motion and speculation. The compiler uses a heuristic that

combines these transformations with scheduling and resource binding in order to improve the

schedule length as well as resource utilisation in a single implementation phase.

Our work involving AHIR is similar to these efforts, since the goal is to transparently

compile software programs into hardware. AHIR differs from both Pegasus and SPARK in the

fact that a circuit specification in AHIR is factorised into three separate components: control

flow, data flow and memory. This factorisation is the key to a compiler flow that can scale to

very large systems. The components can be optimised and implemented separately as long as

specified constraints are satisfied.

An AHIR description always represents a circuit that can be routinely translated to a hard-

ware implementation. The decoupled control and data paths respectively represent operation

sequences and operators bound to them. The compiler can use this information to perform

delay-insensitive low-level optimisations natively in AHIR itself.

6

1.3. Organisation of the thesis

1.3 Organisation of the thesis

In Chapter 2, we present AHIR, the proposed intermediate representation for high-level syn-

thesis. We describe the structure and the execution model of an AHIR specification. We also

describe the specific class of petri-nets used in AHIR, called “Type-2 petri-nets”, along with a

linear-time algorithm to recognise a Type-2 petri-net.

In Chapter 3, we describe the process of mapping an imperative program to a circuit

specification in AHIR using a CDFG as an intermediate step. Each element in the CDFG is

translated to a circuit fragment that implements the corresponding behaviour. We prove that the

construction is correct by recovering a CDFG from the circuit specification, and demonstrating

that it is equivalent to the original CDFG.

In Chapter 4, we demonstrate the ease of analysing an AHIR specification, with an opti-

misation that reuses operators in the AHIR data-path, using a static analysis of the associated

control-path. The complexity of the algorithms and auxiliary representations used is close to

linear with respect to the size of the petri-net.

In Chapter 5, we provide an overview of our compiler that translates a C program to a

synthesisable VHDL descriptions, using AHIR as an intermediate form. The compiler employs

a greedy algorithm to share operators in each data-path, based on the analysis presented in

Chapter 4. We use this compiler to generate VHDL descriptions for a number of input programs

representing diverse applications. The area occupied and throughput delivered by these circuits

are presented at the end of Chapter 5.

Finally, we conclude the thesis in Chapter 6 with a summary of the thesis and a look at

directions for improvement as well as future research.

7

Chapter 2

AHIR

A system in AHIR consists of a number of modules, each consisting of a control-path and a

data-path. Typically, each function in an input program is translated to a module. Function calls

are implemented by passing the call request along with the relevant arguments through an inter-

module link layer. The modules can also share data through an external memory subsystem.

(a) Callgraph (b) Modules

Figure 2.1: Call-graph of a program and the resulting AHIR system.

2.1 A module in AHIR

Two flows are described in an AHIR module — control-path and data-path. The control-path

is a petri-net that specifies the ordering of events in the module. The data-path is a pool of

hardware resources connected by wires. These two paths communicate with each other via the

intra-module link layer.

9

2. AHIR

Figure 2.2: An AHIR module.

The environment of a module includes all the other components of the system, that are not

part of the module. The module interacts with its environment (essentially other modules) in

two ways — by passing messages through the inter-module link layer and passing data through

the memory subsystem.

Communication using symbols

Communication of control through the link layers is specified in terms of the emission and

reception of symbols. The set of symbols associated with a component is called its alphabet.

The data-path uses alphabet Σ, while the control-path uses alphabet Λ. Similarly, the interaction

between modules is represented by the alphabet Ω.

2.2 Data-path

Figure 2.3: An AHIR Data-path.

The data-path is a directed hypergraph (N,E), whereE is the set of hyperedges {e0, e1, . . .}

that represent values flowing in the data-path, N is the set of nodes {n0, n1, . . .} that represent

operations on these values.

10

2.2. Data-path

A hyperedge ei ∈ E is a tuple (di, Li) where the node di ∈ N is the single tail or driver

of the edge and the nodes in set Li ⊂ N are the heads or loads on the edge. These can be

accessed through the functions driver(ei) and loads(ei) respectively. The value of a hyperedge

ei at time t is given by the function value(ei, t). The value is driven by the driver, and the new

value reaches all the loads instantaneously.

For a node n, outgoing edges are represented by the set Out(n) = {ej|ej ∈ E and n =

driver(ej)}, while incoming edges are represented by the set In(n) = {ej|ej ∈ E and n ∈

loads(ej)}. Each node n declares a set of ports, corresponding to the hyperedges incident on

the node. The ports serve as connection points for the hyperedges, and the mapping of ports to

data-edges is defined by a bijection portmap(n) : ports(n) → In(n) ∪ Out(n). This function

allows indirect reference to a data-path edge using the port to which it is connected.

2.2.1 External access

The data-path uses specialised load and store operators to communicate with external memory.

When a load or store operator is triggered by a request symbol from the control-path, it presents

a request to the memory subsystem. The memory subsystem is expected to service this request

eventually. When the request is executed, the operator indicates completion by emitting an

acknowledge symbol.

Additionally, each data-path has input and output ports connected to the inter-module link

layer. An input port is a node that drives a single data-edge, whose value is determined by the

inter-module link layer. An output port is a data-path node with a single incoming data-edge

incident on it. The value of this edge is made available to the inter-module link layer through

the port. Pairs of such input/output ports are used to implement function calls through the

inter-module link layer.

2.2.2 Behaviour of a data-path node

The possible states of a data-path node include a single idle state, and one or more busy states.

Events in an idle node are initiated by the arrival of a request symbol and the node changes its

state to the corresponding busy state. A busy state is associated with each request symbol that

is accepted by the node.

11

2. AHIR

Let reqs(n) = {req1, req2, . . . , reqp(n)} be the symbols in Σ accepted at a node n. Then

the set of states that the node can take is S(n) = {idle, busy1, busy, . . . , busyp(n)}. At a time

t, the state of the node is given by the function state(n, t) ∈ S(n). When a request symbol

reqi arrives at an idle node, the data-path node changes state to the corresponding state busyi,

and samples the input edges. Let Esampled be the set of sampled values êi for each incoming

edge ei. This set is defined in terms of the ports to which the incoming edges are connected:

Esampled(n) = {p̂i| portmap(pi) ∈ In(n)}. At a time t, each value in Esampled is the last

sampled value of that edge if a sampling had occurred in the past, or else it is undefined.

Computations in a busy node use the sampled values of the relevant edges. On completion,

the node updates the relevant outgoing edges and emits an appropriate acknowledge symbol

before returning to the idle state. Let acks(n) = {ack1, ack2, . . . , ackq(n)} be the set of all

symbols in alphabet Σ that may be emitted by the node n. The relation between request and

acknowledge symbols is specific to each node, but the arrival of a request and the eventual

emission of an acknowledge together constitute a handshake in AHIR.

Example: A multiplexer node

ports(mux) = [Din1 , Din2 , Dout]

In(mux) = {portmap(Din1), portmap(Din2)}
Out(mux) = {portmap(Dout)}
reqs(mux) = {req1, req2}
acks(mux) = {ack}

S = {idle, busy1, busy2}
state(mux, 0) = idle

Esampled(mux) = [D̂in1 , D̂in2]

Figure 2.4: Data-path node for a multiplexer.

As an example, consider a multiplexer node as shown in Figure 2.4. The node has two

incoming data-edges, and reacts to two request symbols — req1 and req2. When one of these is

received, it forwards the value on the corresponding data-edge to the single outgoing data-edge

and then emits the single acknowledge symbol ack. The state table describing the behaviour of

a multiplexer node is listed in Table 2.1.

12

2.3. Control-path

state(mux, t) event state(mux, t+) sequence of actions

idle req1 arrives busy1 sample incoming edges

consume req1

start computation

idle req2 arrives busy2 sample incoming edges

consume req2

start computation

idle req1 and req2 arrive undefined undefined

busy1 computation done idle state(Dout, t
+) := D̂in1

emit ack

busy2 computation done idle state(Dout, t
+) := D̂in2

emit ack

Table 2.1: State table for a data-path multiplexer node.

2.3 Control-path

The control-path is a petri-net[14] represented by a four-tuple (P, T,E,M), where P is the

set of places, T is the set of transitions and E is a set of directed edges connecting places and

transitions. The state of the petri-net is its marking, represented by a function M , that maps

places to non-negative integers.

Figure 2.5: An AHIR Control-path.

The control-path interacts with other components using the alphabet Λ. Each transition in

the control-path is associated with at most one symbol from Λ. The set of transitions can be

partitioned into three disjoint sets, T = TI ∪ TO ∪ TH , where TI is the set of input transitions,

TO is the set of output transitions and TH is the set of hidden transitions. An input transition is

13

2. AHIR

gated on the arrival of the corresponding symbol: an enabled input transition fires only when the

symbol arrives. An output transition emits the corresponding symbol when it fires. A hidden

transition is not associated with any symbol.

Let the function symbol(t) : TI ∪ TO → Λ represent the symbol associated with a par-

ticular input or output transition. Symbols associated with distinct transitions are distinct, so

that t1 = t2 ⇐⇒ symbol(t1) = symbol(t2). The alphabet Λ can be divided into two disjoint

subsets: the set ΛI of symbols that are consumed by the input transitions and the set ΛO of

symbols that are produced by the output transitions.

The petri-net that specifies the control-path is required to be live and safe. In particular, it

must belong to a class of petri-nets called “Type-2 Petri-nets”, defined in Section 2.8.2. Every

Type-2 petri-net has a single marked place in the initial marking. This place enables a single

transition called the init transition, which is an input transition that responds to a symbol re-

ceived from the environment. The arrival of this symbol indicates the start of execution for

the control-path. Similarly, the Type-2 petri-net has a single output transition called fin, that

indicates the end of execution of the control-path. This transition marks the same initial place

when fired, and emits a symbol expected by the environment.

2.4 The Intra-module Link Layer

The intra-module link layer translates symbols in Λ produced by the control-path, to symbols

used by the data-path (Σ) or the inter-module link layer (Ω), and vice versa. These translations

are represented as the forward function f and the reverse function r.

LN = (f, r)

f : ΛO → ΣI ∪ ΩI

r : ΣO ∪ ΩO → ΛI

Table 2.2: The intra-module link layer.

The state of the link layer LN at a time t is composed of the symbols that are currently

waiting to be consumed. It is given by the function state(LN, t) = (λ, σ, ω), where λ ⊂ Λ,

σ ⊂ Σ, and ω ⊂ Ω. At the start of execution, no symbols are present in these subsets. When

the link layer is executed at some time t, it instantaneously consumes all the waiting symbols

and emits the corresponding symbols as defined by the translation functions.

14

2.5. Symbol Handshakes

2.5 Symbol Handshakes

Figure 2.6: A symbol handshake.

Operations in an AHIR module are managed by the exchange of symbol handshakes.

Each operator in the data-path is associated with a number of input and output transitions in

the control-path. When one of the output transitions fires, it emits a request symbol in Λ. This

is translated by the intra-module link layer to a symbol in Σ, that triggers the corresponding

operator in the data-path. When the operator finishes execution, it emits an acknowledge symbol

in Σ, that is translated to a symbol in Λ. The arrival of this symbol at the control-path triggers

the corresponding input transition indicating completion of the operation.

This request-acknowledge handshake encapsulates any delays in the implementation. Thus,

the specification remains independent of hardware details. But for an implementation to be cor-

rect, it must still satisfy some constraints as described below. These constraints ensure that the

data in the data-path is valid at all times.

2.5.1 Delay Constraints

In Figure 2.7, we show a hypothetical example with associated delays. The data-path consists

of a single operator with its output connected back to its input. The control-path is a simple

cycle that triggers the data-path operator in an endless loop. The numbered delays d0 to d5 are

not individual values, but representatives of their respective class of delays.

The arrival of an input symbol Ack at an input transition is an error if the transition is

not enabled. Hence the implementation must ensure that the necessary tokens arrive before the

symbol arrives, and the transition is activated in time. Hence we have:

d5 ≤ d0 + d1 + d3 (2.1)

15

2. AHIR

Figure 2.7: Delays in an AHIR specification.

The dual of this fork occurs when a data-path element produces a result and emits the

corresponding acknowledge symbol. The control-path will eventually trigger some other data-

path element that uses this result. Data must arrive at the second element before the request

arrives. Hence we have:

d2 ≤ d3 + d4 + d0 (2.2)

Note that the term d0 + d3 is common to both expressions. It corresponds to the delays

in the intra-module link-layer. An implementation can always guarantee timing correctness by

sufficiently padding these delays so that the inequalities are satisfied.

In Section A.2.1, we describe a synchronous VHDL implementation of the AHIR spec-

ification. The control-path and the link layer in the resulting circuit are asynchronous, while

the data-path operators are synchronous. The delays in the above expressions are assigned the

following values as multiples of the clock cycle.

d0 = d2 = d3 = d4 = d5 = 0

d1 ≥ 1

Clearly, these values satisfy the delay constraints specified above, and hence the resulting

synchronous circuit is guaranteed to be a correct implementation of the AHIR specification.

2.6 The Inter-module Link Layer

The inter-module link layer is used for communication between modules. For example, when

translating C programs to AHIR, function calls are routed through the inter-module link layer.

Each data-path is connected to the inter-module link layer through pairs of input and output

ports as described in Section 2.2.1.

16

2.7. Execution model

Figure 2.8: Arbiters in the inter-module link layer.

One pair represents the formal arguments and return value used when this module is called

by another module. The remaining pairs represent the actual arguments and return value used

when this module calls other modules instead. The module has a separate pair of input/output

ports for each call it makes, even if multiple calls are made to the same destination module. The

inter-module link layer has a separate arbiter assigned to the formal ports of each module. This

arbiter manages the transfer of control and data from the actual ports of the calling modules to

the formal ports of the called module.

A function call is initiated when the caller emits the corresponding request symbol. The

arguments must be available on the actual port of the caller, and these are latched by the arbiter.

The arbiter uses a suitable arbitration mechanism to forward this request to the callee. The

callee indicates completion by emitting an acknowledge symbol and provides the return value

on its formal return port. The arbiter latches this data and forwards it to the caller along with

the acknowledge symbol.

2.7 Execution model

AHIR uses a synchronous execution model, where synchronisation is enforced by the data-path.

The control-path is a Mealy machine, while the data-path is a Moore machine. All elements in

a module execute instantaneously and their results are also instantaneously propagated to the

destinations. Only the computations within a data-path node take a finite amount of time to

17

2. AHIR

complete. This execution model satisfies the delay constraints since all delays are zero, except

the computation delay d1 which is finite. The execution can be represented as an endless loop,

as shown in Table 2.3.

For{ever}

Repeat

Execute control-paths and link layers

Until {no input symbols are available for the link-layers

and no transition in the control-path can fire}

Execute data-paths

EndFor

Table 2.3: Synchronous execution of an AHIR module.

2.8 Petri-nets in the control-path

The control-path of a module in AHIR is described as a petri-net. A petri-net[14] is a directed

bipartite graph with two kinds of nodes — transitions and places. A marking assigns a non-

negative number to each place, indicating the number of tokens in the place.

PN = (P, T,E)

P = set of places

T = set of transitions

E ⊆ (P × T) ∪ (T × P)

M : P → N0

A petri-net is a powerful representation of control-flow that can be used to represent a very

large class of behaviours. We propose a class of petri-nets called Type-2, defined in terms of

constraints specified on the structure of the petri-net. The constraints make it easy to design

analyses that are scalable with the size of the petri-net. At the same time, the class is powerful

enough to express useful sequencing concepts such as parallelism, pipelining, etc.

Terminology

A petri-net represents branching and parallelism in terms of the number of edges incident on a

transition or a place. We need a consistent manner of referring to such elements that can occur

18

2.8. Petri-nets in the control-path

in a live and safe petri-net, as shown in Figure 2.9. We define the following terms to refer to

these structures:

Simple place: A place with one incoming edge and one outgoing edge.

Simple transition: A transition with one incoming edge and one outgoing edge.

Fork: A transition with one incoming edge and multiple outgoing edges.

Join: A transition with multiple incoming edges and one outgoing edge.

Branch: A place with one incoming edge and multiple outgoing edges.

Merge: A place with multiple incoming edges and one outgoing edge.

(a) Simple

Place

(b) Simple

Transition

(c) Branch (d) Merge (e) Fork (f) Join

Figure 2.9: Building blocks in a petri-net.

Canonical form

Note that the terms defined above exclude two other structures that can occur in a live and safe

petri-net — a transition (or a place) with multiple incoming and outgoing edges. These can be

easily replaced by a combination of a fork and join (or a branch and merge) without affecting

the behaviour of the petri-net. These replacements do not affect the execution trace in terms of

externally visible events, or the safety and liveness properties of the petri-net.

A transition with multiple incoming and outgoing edges: This is replaced with a pair of tran-

sitions t0 and t1, connected to a simple place p by directed edges (t0, p) and (p, t1). All

the incoming edges on the original transition are transferred to t0, while all the outgoing

edges are transferred to t1.

A place with multiple incoming and outgoing edges: This is equivalently replaced with a pair

of places connected by a simple transition.

19

2. AHIR

2.8.1 Type-1 petri-nets and Token Preserving Regions (TPRs)

We first define a class of petri-nets called Type-1, which forms the basis of defining the Type-2

class of petri-nets. At the same time, we introduce the notion of a Token Preserving Region

(TPR), which is instrumental in constructing Type-2 petri-nets.

Figure 2.10: A TPR and the corresponding Type-1 petri-net

Definition 2.8.1 A Type-1 Petri-net is a live and safe petri-net that marks exactly one simple

place in the initial marking.

Definition 2.8.2 A token-preserving region (TPR) is a petri-net P that can be augmented

with one simple place p̂ and a sufficient number of simple transitions and edges, to produce a

live and safe petri-net P ′ such that p̂ is the only marked place in the initial marking.

Clearly, a Type-1 petri-net is constructed by augmenting a TPR as shown in Figure 2.10.

In every TPR, there is one place or transition at which an incoming edge is introduced when

completing the corresponding Type-1 petri-net. This place or transition is called the entry of

the TPR. Similarly, there is one place or transition with an outgoing edge, called the exit of the

TPR. There are four classes of TPRs as shown in Figure 2.11, differentiated by the nature of

their entries and exits.

(a) (b) (c) (d)

Figure 2.11: Classification of Token Preserving Regions (TPRs).

20

2.8. Petri-nets in the control-path

Class A: A region with a transition at the entry as well as exit.

Class B: A region with a transition at the entry and a place at the exit.

Class C: A region with a place at the entry as well as exit.

Class D: A region with a place at the entry and a transition at the exit.

2.8.2 Type-2 Petri-nets and Standard TPRs

The Type-1 class admits a large number of petri-nets. We define a subclass of Type-1 called

Type-2 petri-nets, which is used to describe a control-path in AHIR. A Type-2 petri-net is a

Type-1 petri-net created from a TPR that is itself constructed using a standard set of rules

described below. Such a TPR is referred to as a standard TPR(STPR).

In Figure 2.12, we show the five different types of standard TPRs that are admitted in a

Type-2 petri-net. Note that we choose to omit transitions and places whose existence can be

inferred from the context, in order to simplify the representation. This omission is also used in

other figures in the rest of this document wherever it does not introduce any ambiguity in the

petri-net being represented.

(a) Primitive Regions (b) Series Region (c) Fork Region (d) Branch Region

(e) Parallel merges

Figure 2.12: Type-2 construction rules.

21

2. AHIR

Type-2 construction rules:

1. A simple place or transition is a primitive STPR. For convenience, we refer to a primitive

STPR as simply “a place” or “a transition” respectively.

2. A series region is an STPR formed by joining two standard STPRs in series. Not all

combinations are possible since the petri-net is a bipartite graph. The exit of the first

region and the entry of the next region should not have the same type. The following

table shows the series combinations that are allowed. Each row in the table represents

the first region in the series, while each column represents the second region. Each cell

shows the class of the resulting region if the corresponding series construction is allowed.

A B C D

A A B − −

B − − B A

C − − C D

D D C − −

3. A connected acyclic subgraph made of Class C STPRs, forks and joins is a Class A STPR

called a fork region.

4. A connected (possibly cyclic) subgraph made of Class A STPRs, branches and merges is

a Class C STPR called a branch region.

5. Replacing a merge place in a branch region with parallel merges as shown in Figure 2.12(e)

also results in a standard TPR. The set of parallel merges introduced by this replacement

is called a parallel-merge region, described in Section 2.8.3. The elements introduced by

this replacement cannot be used for further application of the standard construction rules,

as explained in that section.

The construction of a branch region allows cycles so that it can express arbitrary branch

as well as loop structures. The fork region expresses parallelism, but its construction does not

allow cycles. If a cycle is present in a fork region, then every back-edge in the region must have

a marked place in the initial marking for the petri-net to be live. This increases the complexity of

analysing the petri-net. Hence we choose to disallow cycles in the fork region. This restriction

22

2.8. Petri-nets in the control-path

does not significantly reduce the expressive power of Type-2 petri-nets. For example, a pipeline

can be expressed in a Type-2 petri-net as a fork region inside a loop as shown in Figure 2.13.

Figure 2.13: Synchronous pipeline in a Type-2 petri-net.

Type-2 replacements

The simplest Type-2 petri-net is a cycle that consists of one marked simple place p and one

simple transition t. The STPR in this petri-net is a primitive transition region that consists of

the transition t. Replacing this transition with a Class A STPR results in a larger Type-2 petri-

net. This process can be continued further to construct large and complex Type-2 petri-nets.

Figure 2.14: A sequence of Type-2 replacements.

In Figure 2.14, we show the construction of a Type-2 petri-net through a series of replace-

ments starting with a simple cycle. In general, if P is a Type-2 petri-net, then replacing a simple

transition in P with a Class A standard TPR results in another Type-2 petri-net. Similarly, re-

placing a simple place in P with a Class C standard TPR also results in a Type-2 petri-net.

2.8.3 Parallel-merge region

The parallel-merge region is a special construct required to implement the flow of values at the

exit of a branch. When a branch occurs in a program, a variable may be assigned different

23

2. AHIR

values along each path in the branch. The actual value that is applicable at this variable beyond

the exit of the branch depends on the path chosen at run-time.

In Figure 2.15(a), we show a code snippet where this run-time selection of values is rep-

resented as a special operator called the φ-function. This operator is used in the Static Single

Assignment (SSA) form, described further in Section 3.1. In AHIR, this corresponds to a tree

of multiplexers in the data-path and a tree of merge places in the control-path as shown in

Figure 2.15.

if ()

a1 = ...; b1 = ...

else if ()

a2 = ...; b2 = ...

else

a3 = ...; b3 = ...

a = φ(a1, a2, a3);

b = φ(b1, b2, b3);

(a) Code snippet. (b) Data-path (c) Control-path

Figure 2.15: Multiple φ-functions and the parallel-merge region.

The dotted transitions at the top of the control-path fragment represent exits from the

three paths of the branch in the code. A token will arrive from only one of the three dotted

transitions, so that only one fork is activated. That fork sends one token to each merge tree,

effectively executing the two φ-functions in parallel. The two tokens exit the merge trees at the

join, which marks the end of the merge operation. In the absence of φ-functions, this entire

subgraph of the control path is equivalent to a single merge place with three input edges.

We define the parallel-merge region as follows:

1. A merge fragment is an acyclic subgraph made of a single place with two input edges and

one output edge, with a simple transition connected to each edge.

2. An m-way merge tree is a connected acyclic subgraph made of m − 1 merge fragments.

The output edge of every merge fragment except one is connected to the input edge of

some other merge fragment through a simple place. The subgraph has m input edges and

a single output edge. A 2-way merge tree is a merge fragment.

24

2.8. Petri-nets in the control-path

3. A k × m parallel-merge region is a connected acyclic subgraph made of the following

components:

(a) k m-way merge trees

(b) m forks with fan-out k, such that each output edge of a fork is connected to an input

edge of a distinct merge tree through a simple place

(c) a single join with fan-in k, such that each input edge is connected to the single output

edge of a distinct merge tree through a simple place

The control-path in Figure 2.15 represents a 2 × 3 parallel-merge region made of two 3-

way merge trees. The entire region is equivalent to a merge place with three incoming edges

and a single outgoing edge.

Restrictions on the parallel-merge region

The parallel-merge region represents the run-time selection of values in the data-path at the

exit of a branch. It is an atomic operation whose intermediate state is not relevant to the rest

of the program. Hence, the elements in the parallel-merge regions are not used for further

replacements in the construction of a Type-2 petri-net. As a convenience, any general reference

to a “Type-2 petri-net” in the rest of this document actually means a Type-2 petri-net in which

all parallel-merge regions have been replaced with equivalent merge places.

Relaxation of the construction rules

The construction rules for Type-2 petri-nets do not allow the replacement of an element within

the parallel-merge region. It is possible to define a larger class of petri-nets by relaxing this

restriction. The resulting petri-net is also live and safe, since all the replacements defined in

Type-2 petri-nets preserve both liveness and safety. Note that three other replacements are

possible, that are structurally similar to the parallel-merge region — parallel-branch, parallel-

fork and parallel-join.

But the strict class of Type-2 petri-nets is itself sufficient for supporting a large class of

programming languages. The structure of a strict Type-2 petri-net is also easy to analyse, as

seen in Chapter 4. The larger class defined by relaxing the construction rules will require new

analyses that are applicable to that class.

25

2. AHIR

2.8.4 Hierarchical representation of a standard TPR

An STPR is constructed by the recursive application of the construction rules described in

Section 2.8.2. If R is an STPR, then it is made of a set of smaller STPRs and so on, ending

in primitive regions. This leads to a hierarchy that represents how an intermediate STPR is

made from smaller STPRs. Note that this hierarchy is only a representation although the Type-

2 petri-net itself is flat. The hierarchical representation is useful for analysing the structure of

the Type-2 petri-net, as described in later sections.

Let S be the set of all the regions that correspond to intermediate steps in the construction

of R. If a region r ∈ S is constructed from a set of regions T ⊆ S, then every region q ∈ T is

said to be a child of r, written as q @ r, and r is said to be the parent of q. Every region r ∈ S

is used in exactly one construction step, unless r = R, which is not used in any construction

step. Hence, every region r ∈ S has at most one parent. The transitive closure of the child

relation is the descendant relation (@∗). If q @∗ r, then q is a descendant of r, while r is called

an ancestor of q. Note that the child and descendant relations are not reflexive.

The child relation (@) can be represented as a single-rooted directed tree where nodes

represent regions and edges represent the child relation. A directed edge (u, v) exists in the tree

if and only if v @ u. For a set T ⊆ S, the root of the smallest subtree T ′ that contains all the

regions in T is called the nearest common ancestor of T . It represents the smallest region that

contains all the regions in T . The NCA is not defined if the root of T ′ is in T , since a region

cannot be its own ancestor.

2.8.5 Algorithm to identify a Type-2 petri-net

We identify a Type-2 petri-net P by checking whether it was created by augmenting an STPR.

By definition, the initial marking of the petri-net must mark a single simple place p0. The

petri-net Tc = P − {p0} represents a candidate STPR with a single entry and exit point.

First, we replace all the parallel merge regions in Tc by simple merge places. The corre-

sponding reduced petri-net is termed Tc
′. Clearly, Tc is an STPR if and only if Tc

′ is an STPR.

We construct the following directed graph G = (N,E) for the candidate STPR Tc
′:

1. The set of nodes N in the directed graph consists of all the places and transitions in Tc
′.

A node u ∈ V is said to be of a place-type (respectively transition-type) if it corresponds

to a place (respectively transition) in Tc
′.

26

2.9. Summary

2. For a place p and a transition q in Tc
′, there is an edge from p to q in E, if q is a successor

of p in Tc
′. Similarly, there is an edge from q to p in E, if p is a successor of q in Tc

′.

Now, the graph G is subjected to the following reduction algorithm:

1. If there is a subgraph of G which is a directed simple path from u to v such that the only

connections to the path are at u and v, then the path is replaced by a simple edge from u

to v (and all other edges and nodes in the path are deleted).

2. If there is a connected subgraph ofG induced by place-type nodes such that the connected

subgraph has a unique entry point u and a unique exit point v, then this subgraph is

replaced by a single edge between u and v (and all other nodes and edges in the subgraph

are deleted).

3. If there is a connected acyclic subgraph of G induced by transition-type nodes such that

the connected subgraph has a unique entry point u and a unique exit point v, then this

subgraph is replaced by a single edge between u and v (and all other nodes and edges in

the subgraph are deleted).

These reductions are repeated until no further reduction is possible. If the remaining graph

at the end of these reductions is a single edge, then the candidate region Tc
′ is in fact an STPR.

This algorithm demonstrates how the hierarchy in a Type-2 petri-net can be exploited by a

divide-and-conquer strategy when analysing it. The algorithm verifies the petri-net in a bottom-

up manner by first verifying the smallest regions and then moving upwards to larger regions

composed from them. The reductions in each iteration have equivalent steps in the construction

of the original Type-2 petri-net.

2.9 Summary

In this chapter, we introduced AHIR as an intermediate representation for hardware circuits.

The representation factorises the circuit into three components: control, data and storage.

The data-path is a simple pool of hardware resources, that consists of operators with well-

defined behaviours. The control-path is a petri-net whose structure is restricted to a class of

petri-nets that we introduce as the Type-2 petri-net. The structure of the Type-2 is defined by

27

2. AHIR

a small set of construction rules. This structure ensures that the control-path is easy to analyse

but also expressive enough to specify complex behaviours.

The ease of analysing a Type-2 petri-net is evident from the algorithm we use for checking

whether a given petri-net is Type-2. This simplicity is further demonstrated by the static analysis

that we introduce in Chapter 4.

28

Chapter 3

The Compilation Process

Our approach to high-level synthesis introduces a well-defined intermediate step in the compi-

lation of software programs to hardware circuits. We implement this intermediate step in the

form of the intermediate representation called AHIR. We demonstrate the practicality of this

approach with a compiler flow that translates a C program to a hardware circuit using AHIR.

The choice of C as the first language to be supported on our high-level synthesis flow is

based on two important facts about C. Firstly, C represents the most common set of features

that are expected by the user of an imperative language. And secondly, C is a very simple

language, with no built-in syntax for special features such as parallelism, array manipulation,

streams, etc. In this respect, it represents the worst starting point for hardware design, while

covering the most common programming features expected by the users. If AHIR works well as

an intermediate step from C to hardware, then it is likely to work better for “better” languages.

The compiler flow uses the LLVM compiler framework to translate the input C program

to a circuit specification in AHIR. The use of an existing compiler framework allows us to save

the effort of building a language front-end to parse the input source code. It also allows us to

leverage all the optimisation tools that are already available in the framework.

The conversion from C to AHIR is a sequence of steps, with a different representation at

each step. The input C program is first converted internally by the LLVM framework to LLVM

bytecode. The LLVM bytecode is an implementation of the SSA form used in software compil-

ers, described in Section 3.1. The LLVM bytecode is then converted to a CDFG, described in

Section 3.2. Finally, the CDFG is factorised into the control and data paths of an AHIR specifi-

cation as described in Section 3.4. In Section 1.1.2, we show that our method of implementing

a given CDFG as an AHIR specification always produces a correct implementation.

29

3. The Compilation Process

3.1 Static Single Assignment (SSA)

d = m + n;

b = m - n;

if (b > 0)

{
a = b + c;

d = e + a;

}
x = d + 2;

(a) C code.

d1 = m + n;

b = m - n;

if (b > 0)

{
a = b + c;

d2 = e + a;

}
d3 = φ(d1,d2);

x = d3 + 2;

(b) SSA form.

Figure 3.1: A code fragment and its SSA form.

The LLVM internal representation is based on the SSA form[15]. The SSA form is a

purely functional representation, that removes the notion of individual variables from a pro-

gram. Every statement that assigns a value to a variable is represented by an instruction that

defines a unique version of that variable instead.

The SSA is convenient for symbolic analysis of programs and provides the right informa-

tion for generating a hardware data-path. Since variable names are no longer important, there

is no explicit location or register for a value. Instead, the value is always available at the output

of the operator that created it.

In Figure 3.1, we show a code fragment in C along with its SSA version. The value of the

variable d after exiting the if-statement cannot be known at compile time. d may be assigned

one of two possible values depending on the value of the condition (b > 0) This run-time

information is captured by a special operator called the φ-function in SSA.

3.1.1 The LLVM internal representation

The LLVM framework uses an internal representation based on a combination of control-flow

graphs and the SSA form. A program in LLVM is a collection of basic blocks as shown in

Figure 3.2(b). A basic block[15] is a maximal sequence of instructions that is not interrupted

by control-flow (branch or merge). The basic block is never empty. Every basic block must

end with a terminator instruction, which belongs to one of two kinds: a branch instruction that

points to other blocks, or a return instruction that exits from the function.

30

3.2. The CDFG representation

d1 = m + n;

b = m - n;

if (b > 0)

{
a = b + c;

d2 = e + a;

}
d3 = φ(d1,d2);

x = d3 + 2;

(a) SSA form.

L0:

A1 = add m, n

S1 = sub m, n

C1 = cmpgt S1, 0

br C1, L1, L2

L1:

A2 = add S1, c

A3 = add e, A2

br L2

L2:

P1 = φ((A1,L0),(A3,L1))

A4 = add P1, 2

(b) LLVM Instructions. (c) CFG + DFG

Figure 3.2: The LLVM internal representation.

The entire program is a control-flow graph (CFG). A CFG is a directed graph where the

nodes are basic blocks and edges represent the control flow specified by the branches. In Fig-

ure 3.2(c), we represent the CFG nodes as boxes and control flow as solid edges.

The control-flow graph is super-imposed on a data flow graph that represents the def-use

chains in the program[15, 16]. The data flow graph is a directed graph where the nodes represent

instructions and edges represent values. The tail of an edge corresponds to the instruction

that defines the value, and the head represents the instruction that use that value for further

computations. In Figure 3.2(c), we represent these nodes as circles and data flow as dotted

edges respectively.

3.2 The CDFG representation

When generating an AHIR specification, we first convert the LLVM IR into a control data flow

graph (CDFG) as shown in Figure 3.2. The CDFG has been frequently used as an intermediate

representation for high-level synthesis in various forms [17]-[21]. A generalisation of the usual

notion of a CDFG is a hypergraph, where a hyperedge connects the definition of a value with

all its uses. The hyperedge can be replaced by a set of equivalent simple edges, and hence its

use does not alter the meaning of the CDFG. The hyperedge can be used as a convenient rep-

resentation of a wire, which simplifies the translation of the CDFG into an AHIR specification.

31

3. The Compilation Process

Figure 3.3: A control data flow graph.

We use the following definition of the CDFG when translating the LLVM IR to AHIR.

The CDFG is a connected directed hypergraph G = (N,E). N is the set of nodes in the

graph, while E is the set of edges. Edges represent values flowing through the CDFG, while

nodes represent operations on the values of incident edges. Each edge ei is a tuple (u, sv) where

u ∈ N is a single tail and sv ⊂ N is a set of heads. The members of the edge e = (u, sv) are

accessed by the functions tail(e) = u and heads(e) = sv. The set E is partitioned into two

disjoint subsets: the control edges EC and the data edges ED.

Every CDFG must have two special nodes: start and stop. The start node is the only

node in the CDFG that has no incoming edges incident on it, while the stop is the only node

with no outgoing edges incident on it.

3.2.1 Control edges

A control-edge ec
i ∈ EC has a single head. At any instant of time t, a control edge can have

one of two states: enabled or disabled. The state of the edge is accessed through the function

state : EC × T → {enabled, disabled}.

The initial state of a control edge is disabled. During execution, the tail may set the state

of a control-edge to enabled and the head may set it to disabled. The new value is available

at both ends of the control edge instantaneously. While a control edge is enabled, the head

32

3.2. The CDFG representation

is expected to fire and set the edge to disabled before the tail may fire again. If the CDFG is

such that both the nodes on a control-edge are ready to fire at some instant of time, the result is

undefined — the structure of the CDFG must ensure that such a state is not reachable.

3.2.2 Data edges

A data-edge ed
j ∈ ED is a directed hyperedge, with one tail called the driver and multiple heads

called the loads. At any instant of time t, the state of a data-edge is the value being driven on

it. Its type is defined as the set of values that can be assigned to it, such as int, float, bool, etc.

The state of a data-edge e ∈ ED is accessed through the function state(e, t) ∈ type(e).

Only the driver can modify the value of a data-edge, and the new value reaches all the

loads instantaneously. The initial state of any data-edge is undefined; the structure of the CDFG

must ensure that the value of data-edge is not accessed before it is defined.

3.2.3 Nodes

A node represents operations performed on the values of the input and output edges incident on

it. For a node n, the edges for which it is the tail are called output edges, represented by the set

Out(n) = {ej|ej ∈ E and n = tail(ej)}. The edges for which the node is a head are called

input edges, represented by the set In(n) = {ej|ej ∈ E and n ∈ heads(ej)}.

Each node n declares a set of ports corresponding to the edges incident on the node. The

ports serve as connection points for the edges, and the mapping of ports to edges is defined by a

bijection portmap(n) : ports(n)→ In(n)∪Out(n). The node also declares a setEsampled(n) =

{p̂i| portmap(pi) ∈ In(n)}, that contains the sampled value p̂i for each port pi associated with

an incoming edge.

The state of a node n at a time instant t is given by the function state : N × T → S

where S = {idle, busy1, busy2, . . . , busym}. The initial state of a CDFG node is idle, except

the start node, whose initial state is busy. An idle node fires when sufficient incoming control

edges are enabled to trigger some transition from idle to a busy state. The node first samples the

incoming data edges, disables the incoming control edges and then begins computation using

the sampled values. On completion, it updates the outgoing edges and returns to the idle state.

33

3. The Compilation Process

Atomic execution The firing of a CDFG node starts a sequence of events that ends with the

node returning to the idle state. The response of the node to external events during this time

is undefined. The exact trace of events is invisible to the external world; the only observable

effects are the changes in the values of the outgoing edges when the node becomes idle again.

In this respect, the execution of the CDFG node is said to be atomic, and the corresponding

execution trace can be considered a single event in the CDFG itself.

3.2.4 The multiplexer node as an example

The behaviour of each node is specific to the operation that it performs on its edges. Typical

CDFG nodes are forks, joins, operators, constants, branches, multiplexers, etc. We describe the

multiplexer node as an example; other nodes can be described by similar state machines.

In(mux) = [Cin1 , Cin2 , Din1 , Din2]

Out(mux) = [Cout, Dout]

S = {idle, busy1, busy2}

state(mux, 0) = idle

Esampled = [Ĉin1 , Ĉin2 , D̂in1 , D̂in2]

Figure 3.4: CDFG node for a multiplexer.

A multiplexer node (commonly known as a “mux”) has two incoming control-edges, and

two incoming data-edges associated with them. When control reaches the mux along one

control-edge, the value on the corresponding data-edge is forwarded to the outgoing data-edge.

This behaviour is listed in Table 3.1.

3.2.5 start and stop nodes

Every CDFG has exactly one start node and one stop node. Execution of the CDFG begins by

firing the start node and control is passed on to other nodes in the graph. Execution is said to

have stopped when control reaches the stop node.

The state table for a start node is listed in Table 3.2. It has only one transition — from

the state busy to the state idle. The initial state for the start node is busy, so that it fires once

34

3.2. The CDFG representation

state(mux, t) condition state(mux, t+) sequence of actions

idle state(Cin1 , t) = enabled and busy1 sample incoming edges

state(Cin2 , t) = disabled state(Cin1 , t
+) := disabled

start computation

idle state(Cin1 , t) = disabled and busy2 sample incoming edges

state(Cin2 , t) = enabled state(Cin2 , t
+) := disabled

start computation

idle state(Cin1 , t) = enabled and undefined undefined

state(Cin2 , t) = enabled

busy1 computation done idle state(Dout, t
+) := D̂in1

state(Cout, t
+) := enabled

busy2 computation done idle state(Dout, t
+) := D̂in2

state(Cout, t
+) := enabled

Table 3.1: State table for the CDFG multiplexer node.

when execution begins. The effect of this firing is to enable the single outgoing control-edge.

The node cannot fire again, since there is no transition defined from idle to the busy state.

In(start) = {}

Out(start) = {Cout}

Sstart = {idle, busy}

state(start, 0) = busy

state(start, t) condition state(start, t+) sequence of actions

busy true idle state(Cout, t
+) := enabled

Table 3.2: State table for the start node.

The state table for the stop node is listed in Table 3.3, which is a dual of the start node.

There is no transition defined from busy to idle. Hence once the stop node fires, it never returns

to the idle state.

35

3. The Compilation Process

In(stop) = {Cin}

Out(stop) = {}

Sstop = {idle, busy}

state(stop, 0) = {idle}

state(stop, t) condition state(stop, t+) sequence of actions

idle state(Cin, t) = enabled busy state(Cin, t
+) := disabled

Table 3.3: State table for the stop node.

3.3 Translating the LLVM IR to a CDFG

The creation of a CDFG from the internal representation of a software compiler is a routine

procedure. Since an exhaustive description of the process is not practical, we summarise the

important steps in generating a CDFG from the LLVM IR. The basic building block of the

LLVM IR is the basic block. Each basic block is flattened to create a fragment of the CDFG as

shown in Figure 3.5. A node in the CDFG fragment represents an instruction in the LLVM basic

block. Control and data edges are created between CDFG nodes that enforce the dependences

between instructions in the LLVM IR. These edges may join nodes that represent instructions

within the same basic block, or in different basic block. The result is a complete CDFG as

shown in Figure 3.6.

3.3.1 CDFG Nodes

Each instruction in the LLVM IR is translated to a node in the CDFG with equivalent behaviour.

An example is the multiplexer node described in Section 3.2.4. Most nodes in the CDFG are

simple operations that operate on the value of incoming edges to generate new values on out-

going edges. Two kinds of nodes have side-effects outside the CDFG — memory load/store

operators and function calls. Load/store operators interact with external memory when invoked

using address and data values available on incident data edges. The function call node receives

arguments along incoming data edges, which are forwarded to the called CDFG. The return

value if any is available on an outgoing data edge.

36

3.3. Translating the LLVM IR to a CDFG

Figure 3.5: Translating an LLVM basic block to a CDFG fragment.

3.3.2 Data edges

The data edges in the CDFG represent the flow of values from nodes that compute them to

nodes that use them. Consider an instruction I in the program that defines a value used by a set

of instructions SI = {I0, I1, . . .} in the program. This is replaced by a data-flow edge (u, sv)

in the CDFG, where u is the CDFG node for instruction I while sv = {v0, v1, . . .} is the set

of CDFG nodes that correspond to instructions in the set SI . The heads of the data edge may

correspond to instructions in the same basic block or other blocks. For example, in Figure 3.5,

the dotted edge starting from node S1 has two heads — one is node C1 which is in the same

fragment, and another is a node in some other fragment.

3.3.3 Control edges

The control edges in the CDFG arise from three components:

1. The data dependence DAG within a basic block.

2. The external dependences between operations within a basic block.

3. Control flow across basic blocks.

Control flow due to data dependences

The instructions in a basic block can be represented as a DAG where the nodes represent in-

structions and edges represent data dependences. When control reaches the basic block, the

order of execution is specified by these data dependence edges. An instruction can execute

only when its data dependences are satisfied, i.e., as soon as its predecessors in the DAG have

37

3. The Compilation Process

executed. This data dependence is enforced by control-edges between the corresponding nodes

in the CDFG. For example, in Figure 3.5, the solid edge from node S1 to C1 is a control-edge

arising from such a data dependence.

An instruction which has no predecessors in the DAG — a root of the DAG — can execute

as soon as the basic block receives control. The entry of control into a basic block is represented

by an entry fork in the CDFG. The execution of the DAG is triggered by control-edges from this

entry to each root. Similarly, an exit join represents the completion of execution of the entire

DAG, with a control-edge from each leaf of the DAG to the join. For example, in Figure 3.5, F

and J are the entry fork and exit join respectively for the block L0.

It is possible that an instruction I in the LLVM IR has multiple predecessors within the

DAG. The corresponding CDFG node n must be executed only when the nodes for all the

predecessors have executed. This is represented as a join node preceding the CDFG node.

Control-edges from the predecessor nodes are connected to this join node instead of n itself.

Similarly, a fork node is introduced if an instruction has multiple successors in the DAG.

Control flow due to external dependences

An additional data dependence is introduced by the occurrence of memory access operators.

Ideally, two memory operators can be executed in parallel if they do not access the same mem-

ory location. But a memory reference analysis of the input program is required to determine

this relation between two memory accesses. The current implementation takes the most conser-

vative approach in this respect. In the absence of a memory reference analysis, the sequence in

which memory operations occur within a basic block is preserved. This is represented by addi-

tional control-edges between memory access operators. This implies a restriction that only one

memory operation may be active at any time. An improved implementation may use reference

analysis in the future to parallelise memory accesses where possible.

Control flow across basic blocks

Control flow in the LLVM IR is described by terminator instructions that occur at the end of

basic blocks. An unconditional branch instruction in a block BB represents control flow from

BB to the destination block mentioned in the branch. Other instructions such as conditional

branch, switch-case, etc. can result in control flow from BB to multiple destination blocks.

Only one of these blocks receives control at runtime, depending on the associated condition.

38

3.3. Translating the LLVM IR to a CDFG

(a) CFG + DFG (b) CDFG

Figure 3.6: LLVM IR and the corresponding CDFG.

For example, in Figure 3.6(a), the conditional branch C1 at the exit of block L0 specifies control

flow from block L0 to blocks L1 and L2, depending on the condition evaluated at C1.

The control-flow in the LLVM IR is translated to control-edges between the entry and exit

nodes in the CDFG fragments. In case of a conditional branch at the end of a basic block, the

exit join of the corresponding fragment is followed by a branch node which represents the actual

exit of the fragment. For example, in Figure 3.6(b), the node B represents the exit of the block

L0. Note that the DAGs within blocks L1 and L2 do not have multiple roots or leaves, and hence

their entry fork and exit join respectively are optimised away. Instead, A2 and P1 represent the

entries of fragments for L1 and L2. Control flow from L0 to L1 and L2 is implemented as control

edges from B to A2 and P1.

3.3.4 start and stop nodes

Every function in the LLVM representation has one basic block that does not have any incoming

control-flow edge. This represents the entry of the function body itself. We create a start node

for the CDFG and connect it to the entry fork for this basic block. Similarly, for the block that

represents the return from the function, we connect the exit join by a control-edge to a stop

node. This completes the construction, to provide a CDFG version of the input program.

39

3. The Compilation Process

3.4 Generating AHIR from a CDFG

AHIR generation proceeds by translating every element in a CDFG to AHIR fragments that

implement the same behaviour as the CDFG element. The complete description is obtained by

joining all the AHIR fragments together according to the connections between the correspond-

ing CDFG elements.

In Figure 3.7, we show the CDFG obtained from our example along with control and

data-paths in AHIR that implement the CDFG. A number of details have been omitted from the

figure, in order to keep it readable. The symbols for the control-path transitions and data-path

operators are not shown. Every edge in the control-path that joins two transitions is actually a

place with edges connecting it to the transitions.

(a) CDFG. (b) Control-Path. (c) Data-Path.

Figure 3.7: Translating a CDFG to AHIR.

The data-path uses an element called a decoder that implements a conditional branch.

Since the control-path cannot have direct access to values in the data-path, the decoder element

D1 is used to examine the value of the condition C1. When it receives a request from the

control-path, it emits one of two symbols depending on the boolean value produced by C1.

This symbol selects the correct branch in the control-path. This is a dual of the multiplexer

node M in the data-path, which chooses a value based on the state of the control-path.

40

3.4. Generating AHIR from a CDFG

∆ = (CP,DP,LN,Λ,Σ)

CP = (P, T,E,M)

T = {t1, t2, ...} ... transitions

P = {p1, p2, ...} ... places

E = {e1, e2, ...} ... petri-net edges

M : P → {0, 1}
DP = {N,W}
N = {d1, d2, ...} ... data-path elements

W = {w1, w2, ...} ... data-path edges within the fragment

LN = (f, r)

f : Λ → Σ

r : Σ → Λ

Λ = {λ1, λ2, ...}
Σ = {σ1, σ1, ...}

Figure 3.8: An AHIR fragment.

3.4.1 An AHIR fragment

An AHIR fragment is the set of all the AHIR elements that together implement the behaviour

of a particular CDFG element. We define a distinct fragment for every kind of a node or edge

in the CDFG. An AHIR fragment is listed as a tuple ∆ that consists of fragments from the

control-path, data-path and the link layer. In Figure 3.8, we list a general AHIR fragment. In

particular, ∆op denotes a fragment that implements the CDFG node for an operation op. ∆C

and ∆D denote fragments that implement control and data edges respectively. For example, the

AHIR fragment ∆mux in Figure 3.9(b) AHIR fragment implements a CDFG multiplexer node.

The interface of a fragment

The edges incident on a CDFG node represent the interface through which local events in

the node interact with the rest of the CDFG. An AHIR fragment has a similar interface for

interacting with the rest of the AHIR module. In the control-path, there are some transitions

that initiate activity within the fragment, when they fire. These are termed as entry transitions of

the fragment. Similarly, there are exit transitions in the fragment, whose firing marks the end of

41

3. The Compilation Process

activity within the fragment. These transitions correspond to the incoming and outgoing control-

edges respectively, that are incident on the corresponding CDFG node. A similar bijection exists

between the data-ports on a CDFG node and the data-ports in the data-path fragment.

Atomic execution

When an AHIR fragment is triggered by the activation of an entry transition, it exhibits a trace

of events, that results in a change in the state of the data-edges. The trace ends with the firing of

an output transition. This trace of events is atomic in the sense that it is undisturbed by further

events happening outside the fragment. These atomic traces of a particular fragment can be

considered equivalent to the execution of the corresponding CDFG node.

3.4.2 The multiplexer node

(a) CP and DP elements.

∆mux = (CP,LN,DP,Λ,Σ)

... ...

T = {t1, t2, t3}
P = {p1}
E = {(t1, p1), (t2, p1), (p1, t3)}
M = {(p1 → 0)}
N = {mux’}
Λ = {req1, req2, ack}
Σ = {s0, s1, s2}
f = {s1 → req1, s2 → req2}
r = {ack→ s3}

(b) The AHIR fragment.

Figure 3.9: AHIR fragment for a CDFG multiplexer node.

A CDFG multiplexer node implements the φ-function in the LLVM representation. It is

implemented in AHIR as a data-path multiplexer node along with a control-path fragment that

interacts with it through symbol handshakes, as shown in Figure 3.9. The petri-net consists of

three transitions — two output transitions that trigger the multiplexer node through requests s1

and s2, and one input transition that waits for an acknowledge symbol s3. The multiplexer be-

gins execution in response to request symbols req1 and req2, and emits an acknowledge symbol

42

3.4. Generating AHIR from a CDFG

ack on completion. The symbols declared by the two fragments are translated in the link layer

by the functions f and r.

An execution of the multiplexer fragment

The transitions t1 and t2 in Figure 3.9 are the entry transitions through which control enters

the control-path fragment for a multiplexer node. A marking of the control-path where one of

these two transitions is enabled represents the state in which the multiplexer is triggered. If

both transitions are enabled at the same time, the result is undefined. But this cannot occur in a

Type-2 petri-net since it is safe.

Consider a marking where transition t1 is enabled. The transition fires, emitting symbol

s1 ∈ Λ, and also enabling the transition t3. The symbol s1 is translated to the request symbol

req1 = f(s1), which triggers the multiplexer node in the data-path. The multiplexer samples

the value on data-edge D′in1
and drives it onto data-edge D′out. It then emits the acknowledge

symbol ack, which is translated by the link layer to the symbol s3 = r(ack), which in turn

triggers transition t3. A similar trace of events occurs when transition t2 is enabled in the

control-path fragment, where the value on data-edge D′in2
is driven on the data-edge D′out.

All symbols emitted during the execution of the fragment are consumed before control is

passed on to subsequent fragments. The overall effect of this flow of control is that the requested

value — D′in1
or D′in2

— is driven on the output data-edge D′out.

Relation with the CDFG multiplexer node

Cin1 → t1

Cin2 → t2

Cout → t3

Din1 → D′in1

Din2 → D′in2

Dout → D′out

Figure 3.10: The interface of a multiplexer node

The AHIR fragment described above implements the behaviour of a CDFG multiplexer

node. This can be demonstrated by comparing the traces of events in the behaviour of the

43

3. The Compilation Process

CDFG node described in Section 3.2.4 with the behaviour of the AHIR fragment. For example,

the firing of transition t1 in the AHIR fragment initiates a sequence of events which is equivalent

to that in the CDFG multiplexer node when the control edge Cin1 is enabled. A similar trace

of events can be listed for the transition t2 in the AHIR fragment, which is equivalent to the

control-edge Cin2 being enabled. In Figure 3.10, we show the mapping from the interface of a

CDFG multiplexer node to that of the corresponding AHIR fragment.

3.4.3 start and stop nodes

∆start = (CP,LN,DP,Λ,Σ)

... ...

T = {t1}
P = {p1}
E = {(p1, t1)}
M = {(p1 → 1)}
Λ = {init}

Figure 3.11: AHIR fragment for the CDFG start node.

The CDFG start node is translated to a control-path fragment as shown in Figure 3.11,

made of a place followed by a single input transition that waits for the init symbol. The place

is initially marked so that the transition is enabled when the AHIR module is initialised.

∆stop = (CP,LN,DP,Λ,Σ)

... ...

T = {t1}
Λ = {fin}

Figure 3.12: AHIR fragment for the CDFG stop node.

The CDFG stop node is equivalent to a single transition in the petri-net that has no output

places. The transition is an output transition that emits the fin symbol for the environment, as

shown in Figure 3.12.

44

3.4. Generating AHIR from a CDFG

3.4.4 CDFG edges

∆C = (CP,LN,DP,Λ,Σ)

... ...

P = {p1}
M = {(p1 → 0)}
E = {(tx, p1), (p1, ty)}

(a) Control Edge

∆D = (CP,LN,DP,Λ,Σ)

... ...

W = {(u, {v0, v1, . . .})}
(b) Data Edge

Figure 3.13: AHIR fragments for CDFG edges.

A CDFG control edge is mapped to a single place, with one incoming and one outgoing

edge. The transitions corresponding to these edges lie in other fragments. These are identified

by place-holders in the fragment listing.

A CDFG data edge is mapped to a single hyperedge in the data-path, with no elements in

the control-path. There are no symbols in these fragments, nor any functions for the link layer.

The single hyperedge is defined in terms of place-holders that indicate nodes in other data-path

fragments.

3.4.5 Labelling scheme

While constructing the AHIR specification, we use a labelling scheme that associates each

AHIR fragment with the CDFG element that it represents. Every node and edge in the CDFG

is first assigned a unique label. When an AHIR fragment is created for a node or edge, each

element in the fragment is assigned a label derived from the label of that node or edge.

This labelling serves two purposes. First, it is used to identify AHIR elements when con-

necting fragments as described later in Section 3.4.6. Second, the labelling scheme allows us to

recover the CDFG that corresponds to a given AHIR specification. This is used in Section 1.1.2,

where we prove that our construction method always produces an AHIR specification that is

faithful to the original CDFG.

45

3. The Compilation Process

Labels for CDFG elements

Let G = (N,E) be the CDFG, and L be the set of labels used on the CDFG. The type of the

labels is not important, as long as they are unique. We have the following labelling for the

CDFG:

label : N ∪ E → L

label(xi) = label(xj) ⇐⇒ xi = xj

∀xi, xj ∈ N ∪ E

Labels for AHIR elements

Consider a CDFG element with label a ∈ L. When it is translated to an AHIR fragment, each

element in the fragment is assigned a label of the form (a, z), where z identifies the element

within the fragment. For example, elements in the AHIR fragment that corresponds to a CDFG

multiplexer node with label a are labelled as follows:

t1 → (a, t1)

p1 → (a, p1)

s1 → (a, s1)

mux’ → (a,mux’)

req1 → (a, req1)

. . .

3.4.6 Connecting fragments

Once the compiler generates fragments for individual CDFG element, the complete AHIR spec-

ification is obtained by connecting the fragments together. A connection is established between

a node fragment and a control-edge fragment by assigning the relevant transition in the node

fragment to the placeholder in the control-edge fragment.

For example, consider an outgoing control-edge with label e1, incident on the start node

with label s1, as shown in Figure 3.14. The start node is mapped to a fragment containing a

marked place p1, a transition t1, and an edge (p1, t1). The control-edge is mapped to a fragment

with a single unmarked place p1, and two incomplete edges that include place-holders for tran-

46

3.4. Generating AHIR from a CDFG

sitions in other fragments. In particular, the place-holder tx represents the transition t1 in the

fragment for the start node.

(a) CDFG. (b) AHIR.

Figure 3.14: Connecting fragments

The members of the two fragments are assigned labels derived from the original CDFG

elements, as shown in Figure 3.15. The place-holder tx refers to the relevant transition using its

label, (s1, t1). For simplicity, we assume that labels can be interchanged with the elements they

represent, so that the edge (tx, p1) can be rewritten as
(
(s1, t1), p1

)
.

t1 → (s1, t1)

p1 → (s1, p1)

(p1, t1) →
(
s1, (p1, t1)

)
(a) Start node fragment ∆start

s1
.

p1 → (e1, p1)

tx ' (s1, t1)

(tx, p1) →
(
e1, (tx, p1)

)
(p1, ty) →

(
e1, (p1, ty)

)
(b) Control edge fragment ∆C

e1
.

Figure 3.15: Labelling in AHIR fragments.

Note that for every edge that is incident on a node in the CDFG, exactly one connection is

established between the corresponding AHIR fragments. This establishes a bijection that maps

the incidence of CDFG edges on nodes to the connections between AHIR fragments.

3.4.7 Creating a Type-2 petri-net

The piecewise translation of the CDFG results in a standard TPR in the control-path, as defined

in Section 2.8. This is because a C program does not contain any constructs for parallel execu-

47

3. The Compilation Process

(a) CDFG. (b) Class-A

STPR.

(c) Type-2 Petri-net.

Figure 3.16: Completing the Type-2 petri-net.

tion. The CDFG derived from the C program introduces forks and joins, but these are restricted

to the body of each basic block. Each basic block thus represents a fork region, used in the

construction of a branch region that represents the entire program.

This branch region is part of a series region that includes the transitions introduced by

the start and stop nodes. The resulting series region is always a Class A standard TPR. We

construct a Type-2 petri-net from this standard TPR by connecting the exit to the entry. As

an example, the smallest possible CDFG is shown in Figure 3.16(a). It consists of a start

node and a stop node connected with a control-edge. The resulting standard TPR is shown in

Figure 3.16(b). We complete the Type-2 petri-net with a single edge as shown in Figure 3.16(c).

3.4.8 Piece-wise translation from CDFG to AHIR

The process of translating a CDFG to an AHIR specification can be summarised as the sequence

of steps enumerated below. This process automatically handles loops in the CDFG, since the

connections between the nodes and edges of the CDFG are preserved in the resulting AHIR

specification. This property is used in Section 3.5 to show an equivalence between the CDFG

and the resulting AHIR specification.

1. For each node n in the CDFG instantiate the corresponding AHIR template ∆op where

op is the operation performed by that node (Section 3.4.1).

2. For each data-edge (u, v) in the CDFG, instantiate the AHIR template ∆D (Section 3.4.4).

3. For each control-edge (u, v) in the CDFG, instantiate the AHIR template ∆C .

48

3.5. Equivalence

4. For the start and stop nodes in the CDFG, instantiate the AHIR templates ∆start and

∆stop respectively (Section 3.4.3).

5. For each edge e incident on a node n, connect the AHIR fragments that correspond to that

node and edge (Section 3.4.6).

6. The AHIR fragments for the start and stop nodes contain the init and fin transitions

respectively. The fragment for the start node also contains a marked place p. Connect the

place to the two transitions using edges (p, init) and (fin, p). This completes the Type-2

petri-net for the control-path (Section 3.4.7).

3.5 Equivalence
The synthesis process generates an AHIR specification from the input CDFG by replacing each

node and edge in the CDFG with an equivalent fragment. In order to show that this AHIR

specification is a correct implementation of the input program we show that it is equivalent to

the intermediate CDFG. In general, an implementation can be shown to be equivalent to the

input specification in two ways:

Black-box equivalence: When the system is treated as a black box, only the outcomes of an

execution of the system are available for examination, since the actual events in the system

cannot be traced. For each initial state, a system specification provides the set of possi-

ble final states that can be reached by an execution of the system. An implementation

is equivalent if the set of outcomes obtained by executing it has a one-to-one correspon-

dence with the specified outcomes.

Trace equivalence: Another way to demonstrate equivalence is to trace the operations that

occur for a given input, and show that these traces are equivalent. In general there can

be multiple such traces for a given initial state of the system. The implementation is

equivalent to the specification if there is a one-to-one correspondence between the traces

possible in the implementation, and those in the specification for the same initial state.

When generating AHIR from the CDFG, we demonstrate equivalence in terms of the op-

eration traces. This is stronger than simply showing that the results are equivalent. Trace

equivalence implies that there is no loss of information when translating the CDFG to AHIR.

49

3. The Compilation Process

The AHIR implementation is closer to hardware since it separates operations in the control path

from operators in the data-path that implement them. But every operation in the CDFG is cor-

rectly represented in the AHIR implementation. Thus every analysis and transformation that is

possible in the CDFG is also possible in the AHIR implementation.

Let G be the CDFG derived from an input program P . We assume that the CDFG G

correctly implements the program P . Let A be the AHIR specification constructed from the

CDFG G. Let SG(X) be the set of traces in G for an input X and SA(X) be the corresponding

set of traces in A. We prove that there is a trace equivalence between A and G:

∀X,SA(X) ≡ SG(X) (3.1)

Outline of the proof:

It is impractical to enumerate the behaviour of the CDFG and its AHIR implementation for

an arbitrary program. Instead, we exploit the piece-wise nature of the construction method to

prove that the structure of the implementation is itself equivalent to the input CDFG. The AHIR

specification is built up by substituting an AHIR fragment for each element in the CDFG and

then connecting those fragments together. We use the following assumption about the CDFG

elements and the corresponding AHIR fragments:

For a CDFG element (node or edge) e, the corresponding AHIR fragment ∆e has

a behaviour that is equivalent to that of the element e — there is a one-to-one

correspondence between the sets of sequences observable in e and ∆e.

Using the equivalence between the CDFG elements and the corresponding AHIR frag-

ments, we can inductively show that the AHIR implementation A correctly implements the

CDFG G. Note that this is a subset relationship — every trace in SA(X) has an equivalent trace

in SG(X), but the opposite is not necessarily true.

∀X,SA(X) ⊆ SG(X) (3.2)

We now translate the AHIR implementation A to a CDFG G′ which is itself a correct

implementation of A:

∀X,SG′(X) ⊆ SA(X) (3.3)

50

3.5. Equivalence

In general, there can be many such graphs derived from the implementation. The method

we use results in a graph G′ which is isomorphic to G — there is a one-to-one correspondence

between the nodes and edges in G and G′, and also between the sets of sequences observable in

G and G′. Thus, the behaviour of G′ is equivalent to the behaviour of G:

∀X,SG′(X) ≡ SG(X) (3.4)

Equations 3.2, 3.3 and 3.4 together imply Equation 3.1, hence proving that the AHIR

specification is equivalent to the input CDFG.

Deriving a CDFG from AHIR

The labelling scheme described in Section 3.4.5 allows us to segregate AHIR elements into

groups using the first component a of their label. Each such group is a fragment ∆a, that was

created for a particular element x with label a in the original CDFG.

x ' ∆a where label(x) = a (3.5)

From each fragment ∆a, we can infer a new CDFG element x′. Clearly, this new element

x′ is equivalent to the original element x, and we assign it the same label a.

∆a ' x′ where label(x′) = a (3.6)

Using the labels to identify fragments, we generate a new CDFGG′ = (N ′, E ′) as follows:

• For each CDFG node n in G, there exists one fragment in the AHIR specification A

identified by the label assigned to n. We map this fragment to a new CDFG node n′ of

the same kind as n, and assign it the same label.

• For each control or data edge e in G, there is one fragment in the AHIR specification

identified by the label assigned to e. We map this fragment to a new CDFG control or

data edge e′ respectively and assign it the same label.

• For an edge e incident on a node n in the CDFG G, the corresponding fragments in the

AHIR specification are connected. The portmap for the corresponding node n′ is updated

to indicate the corresponding edge e′.

51

3. The Compilation Process

The result of this construction is a new CDFG, with labelled nodes and edges. These labels

can then be used to demonstrate an isomorphism with the original CDFG.

Proving Equation 3.2 and Equation 3.3

Due to the manner in which A is constructed from G, we see that for every node or edge in G,

there is an equivalent fragment in A. From this we can make the following observations:

1. Any operation performed by a fragment in A has an equivalent operation performed by

some node or edge in G.

2. Any sequence of operations across fragments in A has an equivalent sequence of opera-

tions across the corresponding nodes in G.

Thus, the behaviour of A is included in the behaviour specified by G. And hence, A is

a correct implementation of G. This proves Equation 3.2 in the outline of the proof. We can

similarly prove Equation 3.3 — the behaviour of the new CDFG G′ is included in the behaviour

specified by the AHIR specification A.

Proving Equation 3.4

From the manner in which A is constructed from G, and G′ is in turn constructed from A, we

can show that every element x in G can be mapped to an element in x′ in G′, such that:

1. The mapping is one-to-one and onto.

2. If n ∈ N , then it is mapped to n′ ∈ N ′ such that n and n′ are behaviour equivalent. In

particular, the start and stop nodes in N are mapped respectively to the start and stop

nodes in N ′.

3. Every edge e ∈ E is mapped to an edge e′ ∈ E ′ such that driver(e) is mapped to

driver(e′) and the set loads(e) is mapped in a one-to-one fashion on the set loads(e′).

The CDFG G’ is isomorphic to the CDFG G and is in fact indistinguishable from G.

Every sequence of operations that occurs in G′ is also specified in G, and vice versa. This

proves Equation 3.4 in the outline of the proof. Thus it is proved that Equation 3.1 is true. The

AHIR specification A derived by our construction method is equivalent to the input CDFG G.

52

3.6. Summary

3.6 Summary

A program written in C can be easily translated to an AHIR specification using a CDFG as an

intermediate step. We use a piece-wise construction to obtain the AHIR specification from the

CDFG, as described in Section 3.4. This method is proven to be correct — the behaviour of an

AHIR specification created by this process always implements the behaviour specified by the

input CDFG. The resulting AHIR specification is well-formed, since the control-path is always

a Type-2 petri-net as seen in Section 3.4.7.

53

Chapter 4

Contention-free Reuse of Hardware

The translation from a high-level program to AHIR results in a circuit specification that decou-

ples control and data components of the behaviour. Every element in the specification has a

clearly described behaviour, so that the entire specification can be routinely translated to hard-

ware. We have implemented a simple mapping from AHIR to synthesisable VHDL that uses

a pre-defined library of RTL descriptions for the building blocks. But the AHIR specification

assigns one operator to every operation in the input CDFG. No optimisation is done at gener-

ation time, since it is desirable to allow the implementer to choose an appropriate strategy for

optimising resource utilisation. Utilisation can be improved by sharing resources, so that the

same operator is allocated to multiple operations.

In general, such a sharing of operators may cause contention, if the corresponding opera-

tions are active at the same time. One way to tackle this contention is to use an arbiter that con-

trols access to the shared operator. But arbitration introduces unpredictability in the behaviour

of the system. It also involves the overhead of dealing with issues such as fairness, deadlock and

starvation. Instead we propose a scheme that avoids this cost by sharing an operator between

only those operations that are never active simultaneously.

The scheme is based on a static analysis of the control-path that provides exhaustive in-

formation about such opportunities for sharing hardware. The analysis exploits the structure of

a Type-2 petri-net to identify all the pairs of operations that are guaranteed not to be active at

the time. We use a simple greedy approach to choose pairs of operations from these candidates

to share hardware. Synthesis results show that this simple scheme itself is quite effective in

reducing hardware costs. This optimisation effectively demonstrates how the factorisation in

AHIR makes it easy to analyse and transform an AHIR specification.

55

4. Contention-free Reuse of Hardware

We first introduce the notion of “compatible operations” — operations that can share hard-

ware without contention. Then in Section 4.1.1, we define compatibility in a Type-2 petri-net

in terms of paths in the petri-net. We introduce a labelling scheme in Section 4.2, that encodes

these paths as labels associated with the petri-net elements and in Section 4.4, we provide an

equivalent definition of compatibility based on labels. Finally in Section 4.5, we present a com-

pact graphical representation of the labels which makes it possible to determine compatibility

using an algorithm that is almost linear in complexity, as described in Section 4.7.

4.1 Compatible operations

(a) Individual Operators. (b) Shared Operator.

Figure 4.1: Sharing a data-path operator.

Consider two operators M1 and M2, that respond to requests req1 and req2 respectively as

show in Figure 4.1. They generate acknowledgements ack1 and ack2 respectively at the end of

execution. The operators can be replaced with a single shared operator if their activity does not

overlap in the control-path — if req1 is emitted, then req2 should not be emitted before ack1 is

received, and vice versa. Pairs of operations that satisfy this property are said to be compatible

with each other. The compatibility relation (') is symmetric, but not transitive.

a, b, c : operations scheduled in the control-path

a ' b ⇐⇒ b ' a

a ' b and b ' c 6=⇒ a ' c

We propose static analysis that exploits the structure of a Type-2 petri-net to determine

whether a given pair of operations is compatible. The resulting compatibility information is

independent of actual delays in the implementation.

56

4.1. Compatible operations

4.1.1 Compatibility in a Type-2 petri-net

Two operations in a petri-net are incompatible if and only if there exists a marking of the petri-

net where both the operations are enabled. Such a marking arises in a Type-2 petri-net (or a

safe petri-net in general) when a fork receives a token and generates tokens that flow to the

two operations. The operations are activated concurrently, making them incompatible. But the

actual condition that determines incompatibility is slightly more complex, because there may

be other structures in the petri-net that force these operations to execute in sequence.

(a) Path segments in a fork region.

1 2 3 4 5

1 Y - Y Y Y

2 - Y - Y -

3 Y - Y Y -

4 Y Y Y Y -

5 Y - - - Y

(b) Compatibility for different segments.

Figure 4.2: Compatibility in a petri-net.

In Figure 4.2(a), we show a fork region with different segments identified by labels. The

fork f gives rise to two tokens that travel concurrently along segments 1 and 2. Operations that

lie on one of these segments are incompatible with those that lie on the other.

But the presence of f ′ and m′ creates additional copies of the token along segment 1, one

of which continues to segments 3 and 4. As a result, operations in segment 1 are compatible

with operations in segments 3 and 4, as well as those in segment 5. The compatibility table for

operations lying on different combinations of segments is listed in Figure 4.2(b).

Incompatibilities arise only between different path segments in a fork region. Branch and

serial regions do not affect compatibility, since tokens do not get replicated in these regions. It

is clear that in order to determine compatibility between two elements, we only need to examine

the region that contains both of them, i.e., their NCA as defined in Section 2.8.4. Based on this

discussion, we have the following definition of compatibility in a Type-2 petri-net:

Definition 4.1.1 Two elements p1 and p2 in a Type-2 petri-net are compatible, if and only if

NCA(p1, p2) is not a fork region or there is a path between the regions within the NCA.

57

4. Contention-free Reuse of Hardware

The following theorem establishes the relationship between compatible operations and

standard TPRs in the Type-2 petri-net. This allows us to discuss the compatibility of arbitrary

elements in terms of the standard TPRs that contain these elements.

Theorem 4.1.1 In a Type-2 petri-net, an element p inside a standard region R is compatible

with an element p′ outside R if and only if the entry e of the region R is compatible with p′.

Proof:

Case 1: If p is compatible with p′, one of the following is true:

1. NCA(p, p′) is not a fork region

2. There is a path within the NCA, joining p and p′

The element p′ is outside the region R while both p and e are inside it. Hence, we have:

NCA(p, p′) = NCA(e, p′). If this is not a fork region, then p′ is compatible with e. If it

is a fork region, there must exist a path joining p and p′. If p′ occurs first on this path,

then it must pass through the entry e before reaching p. If p occurs first on the path, it is

possible to construct a path from e to p′, since there must exist a path from e to p within

the region R. In either case, p′ is also compatible with e.

Case 2: If p′ is compatible with e, we can similarly show that p′ is compatible with p — either

the NCA is not a fork region, or it is possible to construct a path joining p′ and p.

4.2 Labels to indicate compatibility

The compatibility relation in Definition 4.1.1 is based on paths in a Type-2 petri-net. We encode

information about these paths as labels assigned to the elements in the petri-net. Two operations

58

4.2. Labels to indicate compatibility

can be checked for compatibility by comparing the labels assigned to them. Since compatibility

is only affected by forks and joins, the labels are designed to indicate only the forks and joins

that occur along each path that reaches an element.

In Figure 4.3, we show a petri-net fragment with only the transitions visible. Class-C

standard TPRs (such as simple places, series regions or branch regions) that occur between

these transitions are suppressed to save space. The label L assigned to the transition at the top is

propagated along petri-net edges. When a fork is encountered, new labels are created to identify

tokens generated at the fork (such as L1, L2, etc.) Eventually when all the tokens reach a join,

the original label is restored (such as the join at the bottom of the figure.)

Figure 4.3: A labelled petri-net fragment.

A label is a set L = {x0, x1, . . .} where each member is a sequence of label elements

x = [a0, a1, . . . , an]. A label element is a 3-tuple a = (f, k, i), containing a fork identifier f ,

the fan-out k of the fork, and an index i into the fan-out of the fork. A label element a = (f, k, i)

is said to indicate the fork f . The length of a sequence is the number of label elements in the

sequence, represented as function l : label → N . The empty sequence is denoted by φ, so that

l(φ) = 0. The empty label is represented by Φ.

1. Equality: Two label elements a = (fa, ka, ia) and b = (fb, kb, ib) are equal if and only if

the corresponding members are equal.

a = b ⇐⇒ fa = fb and ka = kb and ia = ib

Two sequences x = [a0, a1, . . . , al(x)−1] and y = [b0, b1, . . . , bl(y)−1] are equal if and only

if corresponding label elements are equal.

x = y ⇐⇒ l(x) = l(y) and ai = bi for 0 ≤ i < l(x)

59

4. Contention-free Reuse of Hardware

2. Concatenation: The concatenation operator joins two sequences to create a longer se-

quence. Given two sequences x = [a0, a1, . . . , al(x)−1] and y = [b0, b1, . . . , bl(y)−1], the

term x.y represents the sequence [a0, a1, . . . , al(x)−1, b0, b1, . . . , bl(y)−1].

The following properties are true for concatenation:

l(x.y) = l(x) + l(y)

φ.x = x.φ = x

x.(y.z) = (x.y).z

For convenience, the same operator is used to denote the concatenation of a single label

element b to a sequence x. In this case, the single element is considered a sequence of

unit length.

x.b = x.[b]

3. Body and tail: For a sequence x = [a0, a1, . . . , al−1], the function tail(x) = al−1 returns

the last element in the sequence, while the function body(x) = [a1, . . . , al−2] returns the

entire sequence except the last element.

4. Product: The product of two labels X and Y is given by:

X ∗ Y = Y if X = Φ,

X if Y = Φ,

{xi.yj|∀xi ∈ X, yj ∈ Y } otherwise

For convenience this operator is also overloaded to allow the product of a label X with a

label element a:

X ∗ a = X ∗ {[a]}

The product operator is distributive over the label union:

X ∗ (A ∪B) = (X ∗ A) ∪ (X ∗B)

5. Prefix relation: Consider two sequences x = [a0, a1, . . . , al(x)−1] and y = [b0, b1, . . . , bl(y)−1].

The sequence x is a prefix of sequence y, if and only if there exists a possibly empty se-

quence w, such that y = x.w. The prefix relation (≤) imposes a partial order on the set

60

4.2. Labels to indicate compatibility

of sequences.

x ≤ y ⇐⇒ l(x) ≤ l(y) and

ai = bi for 0 ≤ i ≤ l(x)− 1, if l(x) > 0

The following properties are true for the prefix relation:

x = y ⇐⇒ x ≤ y and y ≤ x

φ ≤ x,∀x

6. Longest Common Prefix: The Longest Common Prefix (LCP) of a set of label sequences

S is the longest label sequence that is a prefix of every sequence in S. It is defined in terms

of the concatenation operator (.) as follows.

A non-empty label sequence x can be represented as y.awhere y is a possibly empty label

sequence and a is a label element. The sequence y is said to be a parent of sequence x,

while x is said to be a child of y.

Clearly, every non-empty sequence has exactly one parent. The set of all label sequences

can be represented as a single-rooted directed tree T where the nodes represent label

sequences while edges represent parent-child relationships. A directed edge (y, x) exists

in the tree if and only if y is the parent of x, i.e., x = y.a. The single root of this tree is

the empty sequence (φ).

In this tree, LCP(S) is the root of the smallest subtree T ′ that contains every sequence in

S. Since the prefix relation is reflexive, LCP(S) can itself be a member of S.

4.2.1 Labelling scheme

Before labelling, the parallel-merge regions described in Section 2.8.3 are reduced to simple

merges. The labelling scheme begins by assigning an empty label to the init transition and then

traverses the petri-net by visiting each successor of a recently labelled element. A petri-net

element p is assigned the same label as its predecessor(s) in two cases:

1. p has a single predecessor p′ which is either a branch or has a single successor p.

2. p is a merge, in which case, all its predecessors have the same label.

Besides this, there are two special cases — when the predecessor p′ is a fork, and when p

is a join. These are handled as follows.

61

4. Contention-free Reuse of Hardware

4.2.2 Labelling successors of a fork

A fork is a transition with a single incoming edge and multiple outgoing edges. Let f be a fork

with k(f) successors and L be the label assigned to it. Each successor si is assigned the label

L ∗
(
f, k(f), i

)
, as shown in Figure 4.4.

Figure 4.4: Labelling successors of a fork.

4.2.3 Labelling a join

A join is a transition with multiple incoming edges and a single outgoing edge. It is assigned

the union of the labels assigned to all its predecessors as shown in Figure 4.5(a). In some cases,

the label assigned to a join is also reduced as shown in Figure 4.5(b) and 4.5(c).

(a) A simple union. (b) A simple reduction. (c) A subset reduction.

Figure 4.5: Labelling at a join.

Reducible Subsets

The union of labels computed at a join is reduced by identifying reducible subsets. A subset J

of a label L is said to be reducible with respect to some fork f , if it can be rewritten as a product

62

4.2. Labels to indicate compatibility

expression as follows:

J = U ∗ V, for some U, V such that

V = {v0, v1, . . . , vk(f)−1}

vi =
(
f, k(f), i

)
In the above expression, the set U is in fact the label assigned to the fork f , and the set V

represents the elements introduced at the successors of fork f .

Each reducible subset in a label is replaced by the function reduce. Let reducibles(L) be

the set of reducible subsets in some label L. The function reduce : label→ label is defined as:

reduce(L) = L− J + U

for J = U ∗ V ∈ reducibles(L)

This reduction is performed recursively until a fixed point is reached, represented by the

function reduce*.

reduce*(L) = L if reduce(L) = L

reduce*
(
reduce(L)

)
otherwise

Note that reducible subsets in a label can be reduced independently. The reduction of a

reducible subset in a label does not break other reducible subsets that may exist in the label.

This follows from the fact that for any subset J that is reducible with respect to some fork f ,

every sequence in J ends with an element of the form
(
f, k(f), i

)
. Consider another reducible

subset J ′ such that some sequence j ∈ J is also in J ′. It follows that J ′ is also reducible with

respect to the same fork f . Since both J and J ′ are reducible, the presence of j implies that

there is a subset Q in both J and J ′ such that:

Q = body(j) ∗ {v0, . . . , vk(f)−1}

Q is itself a reducible subset and when J is reduced, the subset Q vanishes entirely and is

replaced by the sequence body(j) in set J ′, and the resulting set J ′ −Q is also reducible. This

is true for every sequence that occurs in both sets J and J ′. In the special case where J ′ ⊆ J ,

J ′ vanishes entirely when J is reduced.

63

4. Contention-free Reuse of Hardware

4.3 Concurrency encoded in labels

The labelling scheme is a symbolic execution of the Type-2 petri-net that tracks the parallelism

introduced by forks. The labels are assigned to petri-net elements, but they actually record the

flow of tokens in the petri-net. A label for a petri-net element contains a label element indicating

fork f if and only if it receives a token from f which has not yet merged with all the other tokens

produced by f . This is a result of the interaction between forks and joins that occur within a fork

region. In this section, we define a number of terms to describe this interaction and describe the

relationship between labels and concurrency in the form of Theorem 4.3.2.

Definition 4.3.1 For a fork f in a fork region R, an element that occurs on every path from f

to the exit of the region is called a post-dominator of the fork f .

Clearly, the exit of the region is itself a post-dominator of every fork in the region. The

following properties are true for two post-dominators p and p′ of a fork f in region R:

1. Both p and p′ must lie on every path from f to the exit of the region. This automatically

follows from the definition of a post-dominator.

2. If p occurs earlier than p′ on some path P from f to the exit of the region, then it does so

on every such path. If this were not true, then there is a path P ′ such that p′ occurs before

p. This implies that there is a cycle in the fork region, passing through p and p′, which

is not allowed by the definition of a Type-2 petri-net. Hence p must occur before p′ on

every path from f to the exit of region R.

This relationship between multiple post-dominators allows us to identify a unique element

called the immediate post-dominator of a fork f .

Definition 4.3.2 For a fork f in a fork region R, the post-dominator of f that occurs before

any other post-dominator on every path from f to the exit of the region is called the immediate

post-dominator of f .

The element where two paths meet in a fork region is always a join, and hence the im-

mediate post-dominator is a join. This join j is said to be the associate join of the fork f . It

represents the boundary of the influence of fork f — all tokens starting from a fork must meet

64

4.3. Concurrency encoded in labels

at its associate join and the concurrency introduced by the fork collapses into a single thread

beyond that join.

Similarly, we can define the notion of a pre-dominator of a join j, which is a fork f

that must occur on every path from the entry of the region R to that join. The immediate

pre-dominator of a join is called the associate fork of that join.

Note that the associate relationship is not symmetric. If a fork f is the associate of a join

j, it is not necessary that the join j is also the associate of the fork f .

Theorem 4.3.1 In a fork region R, consider a fork f with associate join j and another fork f ′

that lies on a path from f to j. If j′ is the associate join of f ′, then one of the following is true:

1. j′ is j itself.

2. j′ is encountered on every path from f ′ to j.

The behaviour implied by this property is that if a concurrent thread starting from a fork f

reaches another fork f ′, then the concurrent threads further started by f ′ must converge before

those started by f , or along with them.

The first case is only a special case. If it is not true, we need to prove that the second case

is true. Consider a path from f ′ that goes out of region R. Since j′ is the associate join, it lies

on such a path. If j is encountered before j′ on this path, then there exists a path from f ′ to j′

that does not pass through j, but reaches the exit of the region R. This implies that there is a

path from the fork f (through f ′ and j′, that does not pass through j but still reaches the exit

of the region R. This cannot be true since j is the associate join of the fork. Hence, j must lie

after j′ on every path from f ′ to the exit of the region.

4.3.1 Canonical form of a fork region

The Type-2 construction rule for a fork region allows subgraphs that are themselves fork re-

gions. These subgraphs can be identified from their entries and exits — if a fork f and join j in

a fork region R are associates of each other, then the set of elements that lie on every path from

f to j is itself a fork region. A fork region that does not contain such smaller fork regions is

said to be in the canonical form. Note that the canonical form does not affect the actual petri-net

itself, but only its representation in terms of the standard TPRs. The canonical representation

allows us to simplify the treatment of fork regions in later sections.

65

4. Contention-free Reuse of Hardware

Definition 4.3.3 A canonical fork region is a fork region where a fork f and a join j in the

region are associates of each other if and only if they are the entry and the exit of the region

respectively.

Two types of subgraphs occurring in a non-canonical fork region can be identified as

smaller fork regions:

Case 1: If the exit j of a fork region is not the associate of the entry f , then there exists an

associate join j′ for the entry fork f and similarly an associate fork f ′ for the exit join j.

The fork region can be replaced by a series region made of three regions:

1. The fork region defined by f and j′.

2. The set of elements lying on every path from j′ to f ′.

3. The fork region defined by f ′ and j.

Case 2: If some fork f ′ and join j′ other than the entry and exit are associates of each other,

then they form a fork region that in turn forms a series region along with the region

preceding f ′ and the region succeeding j′.

4.3.2 Labelling in a canonical fork region

Theorem 4.3.2 If j is the associate join j of a fork f in region R, then there is no sequence in

the label assigned to j that contains a label element indicating fork f .

We prove this property by induction on the structure of a canonical fork region. For the

child regions of this region, we make the following general assumption, which we prove as a

theorem in the next section: The label assigned to the exit of a region is the same as the label

assigned to its entry.

Base case: A region where joins occur on any path from f to j (but not forks) as shown in

Figure 4.6(a).

Let L be the label assigned to fork f . Each successor si of the fork f is assigned the label

Li = L ∗
(
f, k(f), i

)
, which is propagated along all paths starting from si. Since there

are no other forks in the region, this label is not modified by further product operations.

A path reaching j from the entry of the region R may or may not have passed through the

66

4.3. Concurrency encoded in labels

(a) Base case: No intermediate forks. (b) General case: With intermediate forks.

Figure 4.6: Associate join for a fork.

fork f . The label assigned to j is computed from the union of all the labels arriving along

all such paths. The entire union of labels at j can be decomposed into two terms as shown

below. The second term is reducible with respect to the fork f , and can be replaced by

the label L:

Lj = X ∪ (L1 ∪ . . . ∪ Lk(f)−1)

= X ∪ L

X : the union of labels arriving along paths that do not pass through f .

In the above expression, neither of the terms contains a label element indicating fork f .

Hence, the theorem is true for the base case.

General case: In the general case we allow the presence of other forks on any path from f to

j as shown in Figure 4.6(b). Consider a fork f ′ on a path from f to j, such that no other

fork occurs on any path from f to f ′. Since this is the first fork encountered, the label

assigned to it has the following form:

67

4. Contention-free Reuse of Hardware

Lf ′
= X ∪ L′

X : the union of labels arriving along paths that do not pass through f .

L′ = Li1 ∪ Li2 ∪ . . .

the union of labels assigned to successors of fork f on paths from f to f ′.

We assume that Theorem 4.3.2 is true for every such fork f ′, i.e., the label assigned to the

associate join j′ does not contain any label element indicating fork f ′. This label has the

following form:

Lj′
= Y ∪ Lf ′

Y : the union of labels arriving along paths that do not pass through f ′.

The paths reaching j′ may or may not pass through the outer fork f . Hence the label at

join j′ can be decomposed into two components similar to the label at fork Lf ′ .

Lj′
= X ∪ L′

X : the union of labels arriving along paths that do not pass through f .

L′ = Li1 ∪ Li2 ∪ . . .

the union of labels assigned to successors of fork f on paths from f to j′.

From Theorem 4.3.1, j′ is either the join j itself or it lies on every path from f ′ to j. If

j′ is the join j itself, then Lj′ is in fact only a subset of the label Lj assigned to join j,

which is a union of all the labels arriving at j. The presence of fork f ′ did not produce

any terms indicating fork f in label Lj .

If j′ is not the join j, then further forks may occur along the path from j′ to j. But in each

case we can make the same argument as above, and eventually conclude that the presence

of any fork along a path from f to j is not reflected in the label Lj . This implies that the

labels assigned to the successors of fork f are unmodified when they eventually reach the

join j, so that the label at j can be written as:

68

4.3. Concurrency encoded in labels

Lj = X ∪ (L1 ∪ . . . ∪ Lk(f)−1)

= X ∪ L

Hence proved that the label at the associate join of a fork does not contain any label

elements indicating that fork.

Theorem 4.3.3 If f is the entry of a fork region R, and j is the exit of the region, then the label

assigned to j is the same as the label assigned to f .

The entry f and the exit j are associates of each other in a canonical fork region. From

Theorem 4.3.2, if L is the label assigned to the fork f , then the label assigned to the join j can

be written as:

Lj = X ∪ (L1 ∪ . . . ∪ Lk(f)−1)

= X ∪ L

X : the union of labels arriving along paths that do not pass through f .

But since f and j are associates of each other, there is no path that passes through j but

does not pass through f . Hence the term X in the above expression is empty, and the label

assigned to the join is the same as the label assigned to the fork.

4.3.3 Labelling in a Type-2 petri-net

Theorem 4.3.4 The label assigned to the exit of a standard TPR is the same as the label as-

signed to its entry.

We prove this theorem by induction over the structure of the different standard TPRs

defined in a Type-2 petri-net.

Primitive regions: A primitive region consists of a simple place or transition, which is the

entry as well as the exit of the region. Hence the theorem is trivially true for a primitive

region. This provides the base case for the induction.

69

4. Contention-free Reuse of Hardware

Series region: Let A and B be the regions that occur in a series region R. If A occurs first,

then the entry of A is the entry of R, while the exit of B is the exit of R. The exit of A

is connected to the entry of B by a simple edge in the petri-net, and the labelling scheme

assigns the same label to both these elements. If the theorem is true for regions A and B,

then the label assigned to the entries and exits of all the regions A, B and R are the same.

Branch region: The label assigned to every successor of a branch is the same as the branch

itself, and the label assigned to a merge is the same as all its predecessors. Thus, if the

theorem is true for all the child regions of the branch region, then it follows that the exit

(branch or merge) is assigned the same label as the entry (branch or merge).

Fork region: We have already proven in Theorem 4.3.3 that the entry and the exit of a fork

region have the same label, assuming that Theorem 4.3.4 is true for all regions. This

results in a “recursive induction”, which terminates at a fork region such that none of its

descendants are fork regions.

Theorem 4.3.5 The label assigned to the entry of a region is a prefix of all labels assigned to

elements within that region.

Proof:

We prove the theorem by induction on the construction of Type-2 standard regions as follows:

Primitive region: Since there is only one element in the region, which is the entry as well as

the exit, the theorem is trivially true.

Branch or Series regions: In a branch or series region, the entries of the child regions are

assigned the same label as the entry of the region itself. If the theorem is true for the

constituent regions, then L is the prefix of any labels created in each of these regions.

Fork regions: Let L be the label assigned to the entry fork. The successors of this fork are

assigned new labels created by extending L as described in the labelling scheme. These

extensions disappear only at the exit of the region. Thus, the label assigned to the entry of

a constituent region is an extension of L. If the theorem is true for the constituent regions,

then all labels assigned within the fork region are extensions of the label L.

70

4.4. Testing labels for compatibility

4.4 Testing labels for compatibility

Given a labelled Type-2 petri-net, it is possible to exhaustively identify pairs and even sets of

compatible operations. The label of a petri-net element records the effect of forks along paths

reaching that element from the init transition. This information is sufficient to infer the nature

of the NCA of two elements and the presence of paths passing through both the elements. This

allows us to determine whether the two elements are compatible.

We first propose a definition of compatibility for labels, and in Theorem 4.4.1, we estab-

lish a relation between this and the hierarchy of regions in a Type-2 petri-net. Then in Theo-

rem 4.4.2, we prove that the compatibility of two elements is identical to the compatibility of

the labels assigned to them.

Definition 4.4.1 Two labels L1 and L2 are compatible if and only if one of the following is true:

1. L1 = Φ or L2 = Φ

2. ∃ l1 ∈ L1, l2 ∈ L2 such that one of the following is true:

(a) l1 ≤ l2 or l2 ≤ l1

(b) If x = LCP(l1, l2), then there exist label elements e1 and e2 such that following

statements are true:

i. x.e1 ≤ l1 and x.e2 ≤ l2

ii. e1 = (f1, k1, i1), e2 = (f2, k2, i2) where f1 6= f2

Theorem 4.4.1 Let p be an element in a region R in a Type-2 petri-net. Let e be the entry to

the region, and p′ be an element outside the region. The label assigned to p′ is compatible with

the label assigned to p, if and only if it is compatible with the label assigned to e.

71

4. Contention-free Reuse of Hardware

Proof:

Let Lp, Le and Lp′ be the labels assigned to the three elements p, e and p′ respectively. The

label Lp is an extension of the label Le, which can be written as Lp = Le ∗ U for some set U

that is a function of forks occurring in the region R. The set U is empty when all ancestors of p

upto and including R are non-fork regions. If U is not empty, then sequences in U are unique

to the region R and cannot occur in any label outside of R.

If Lp and Le are not empty, then there exist sequences le ∈ Le and lp ∈ Lp, such that

lp = le.u, for some u defined inside region R. Thus we have, LCP(lp, lp′) = LCP(le, lp′).

Case 1: If Lp′ is compatible with Lp, either one of the two labels is empty, or there exists a

sequence lp′ ∈ Lp′ that satisfies Definition 4.4.1. We have the following possibilities,

along with their implications:

Lp′ = Φ

Lp = Φ =⇒ Le = Φ

lp′ ≤ lp =⇒ lp′ ≤ le

lp ≤ lp′ =⇒ lp = le ≤ lp′

In each of these cases, it follows that Lp′ is also compatible with Le.

Case 2: Similarly, if Lp′ is compatible with Le, then we have the following possibilities:

Lp′ = Φ

Le = Φ =⇒ LCP(lp, lp′) = φ

lp′ ≤ le =⇒ lp′ ≤ lp

le ≤ lp′ =⇒ LCP(lp, lp′) = le

In each case, it follows that Lp′ is also compatible with Lp.

Theorem 4.4.2 Two elements in a Type-2 petri-net are compatible if and only if the labels

assigned to them are compatible.

Proof:

Consider two elements p1 and p2 in a Type-2 petri-net, with labels L1 and L2 respectively. Let

the region R be the NCA of the two elements. If p1 is not a child of R, then there exists a region

72

4.4. Testing labels for compatibility

R1 such that p1 @∗ R1 @ R. This is the largest region inside R that contains p1 but not p2.

From Theorem 4.1.1, p2 is compatible with p1, if and only if it is compatible with the entry of

R1. Similarly from Theorem 4.4.1, L2 is compatible with L1, if and only if it is compatible with

the label assigned to the entry of R1.

Hence, if R1 exists, we can use the entry of R1 in the place of p1 in our proof, without

affecting the outcome. We simply use the same name p1 to refer to this entry, while L1 refers to

the label assigned to it. We also replace p2 with the entry of a similar region R2 if it exists.

Part 1: If the two elements are compatible, then from Definition 4.1.1, one of the following

must be true:

1. R is not a fork region.

2. There is a path in R that passes through both p1 and p2.

Case 1: If R is not a fork region, then L1 = L2. Either L1 = L2 = Φ, or there are

pairs of sequences l1 ∈ L1 and l2 ∈ L2, such that l1 = l2. In either case, the labels

assigned to the two elements are compatible.

Case 2: If R is a fork region, then there is a path P that reaches both elements. Without

loss of generality, let p1 be the element that occurs earlier on the path. Let f be the

fork at the entry of region R, with fanout k(f). Each sequence x ∈ L is extended

by the fork f as x.
(
f, k(f), i

)
. A number of forks may have occurred on the path P

before reaching p1, introducing additional elements in the label. If these forks are

denoted as g1, g2, . . ., then any sequence l1 ∈ L1 can be expressed as:

l1 = x.
(
f, k(f), if

)
.
(
g1, k(g1), ig1

)
. . .

If p1 is the entry of R1, then the label L1 is also assigned to the exit of R1. Irre-

spective of the existence of R1, the same label L1 eventually reaches p2 along path

73

4. Contention-free Reuse of Hardware

P . But it may be modified by forks and joins that may occur on path P , before it

reaches p2 as follows:

1. Intervening forks extend the label, denoted by hj .

2. Intervening joins reduce the label, removing elements from forks that may have

occurred before p1 (denoted by gj) or after it (denoted by hj).

A sequence l2 that reaches p2 from p1 along the path P has the form:

l2 = x.
(
f, k(f), if

)
.
(
g1, k(g1), ig1

)
. . .

(
h1, k(h1), ih1

)
. . .

Note that the label element indicating fork f cannot be reduced by any join inside

the region R, since the associate join occurs at the exit of the region. If l2 is written

as l2 = a.
(
h1, k(h1), ih1

)
. . ., then a is a prefix of l1 as well as l2, such that the

conditions for compatibility described in Definition 4.4.1 are satisfied. Hence, the

two labels L1 and L2 are compatible.

Part 2: If the two labels L1 and L2 are compatible, then the theorem claims that the elements

p1 and p2 are also compatible. To prove that, we prove the contra-positive instead: If two

elements are not compatible, then their labels are also not compatible.

If p1 and p2 are not compatible, then R is a fork region, and there is no path from the

entry of the region R, that reaches both elements. Since R is a fork region, neither label

is empty. Let P1 and P2 be a pair of paths from the entry, that reach p1 and p2 respectively.

The two paths must have diverged at some fork g (which could possibly be the entry of

the region R). Hence any two sequences x1 ∈ L1 and x2 ∈ L2 can be written with a

(possibly empty) common prefix a indicating the forks that occur along the common path

upto g, as follows:

x1 = a.
(
g, k(g), i1

)
. . .

x2 = a.
(
g, k(g), i2

)
. . .

Clearly, the sequences x1 and x2 do not satisfy the conditions in Definition 4.4.1. This is

true for any pair of sequences taken from the sets L1 and L2, and hence the two labels are

not compatible.

74

4.5. A compact graph-based representation of labels

4.5 A compact graph-based representation of labels

The compatibility label is a record of every path reaching that element from the init transition,

which results in an exponential size. Comparing two labels for compatibility also has exponen-

tial complexity, since every sequence in one label has to be compared with every sequence in the

other label. This complexity makes it infeasible to implement labels as just sets of sequences.

Instead, we propose a graphical representation, where each label is represented by a node in

the graph, as shown in Figure 4.7. Edges in the graph represent the construction of labels from

other labels. Compatibility between two nodes is determined by the existence of a node that

satisfies a specific condition. This representation has the following advantages:

1. The representation is compact, since the number of nodes corresponds to the number of

distinct labels, which is less than the number of elements in the petri-net.

2. The complexity of the test for compatibility for two labels is close to linear, based on a

depth first search that locates a node satisfying a specific condition.

3. If a node that satisfies the compatibility condition for one pair of labels, then it also

identifies many more pairs of compatible labels. This reduces the effort needed for an

exhaustive search for compatible pairs.

Figure 4.7: Label Representation Graph.

75

4. Contention-free Reuse of Hardware

4.5.1 The label representation graph (LRG)

The label representation graph (LRG) is a directed acyclic graph G = (N,E, r), where N is

the set of nodes and E is the set of directed edges. The graph has a single root node r ∈ N .

The nodes in the graph represent labels assigned to petri-net elements. The root node

represents the empty label Φ. Edges are associated with label elements used in the construction

of labels. Let l(n) be the label represented by a node n ∈ N , and l(e) be a label element

associated with an edge e ∈ E. An edge e = (u, v) ∈ E in the graph indicates that the label

l(v) is derived from the label l(u) in some manner, using l(e).

The label element at an edge can be empty, represented by the symbol φ. An edge e ∈ E

is said to be labelled if and only if l(e) 6= φ. A labelled edge in the graph represents the product

operation. For a labelled edge e = (u, v) in the LRG, l(v) = l(u) ∗ l(e). On the other hand,

if multiple incoming edges are incident on a node n ∈ N , then l(n) is the union of the labels

represented by the tails of those edges. In a well-formed LRG, all the incoming edges at a node

are unlabelled, if and only if there are multiple incoming edges at that node. An LRG may

represent a valid labelling scheme only if it is well-formed.

The LRG serves as a compact representation of all the labels created by labelling a Type-2

petri-net. Any path in the LRG starting from the root node r to a node n ∈ N contributes one

sequence in the label l(n). The actual label l(n) is the set of sequences corresponding to all

paths that reach n from r.

4.6 Construction of the LRG

Initially, the LRG for a Type-2 petri-net is empty. The labelling of a Type-2 petri-net begins by

assigning the empty label (Φ) to the init transition. This label is represented as a new node in

the LRG, which becomes the root of the graph. As labelling proceeds, if an element is assigned

the same label as its predecessor, that label is already represented in the LRG. New nodes and

edges are introduced in the LRG for two cases as follows:

4.6.1 Labelling the successors of a fork

For a fork f with label L, each of its successors is assigned a new label Li = L ∗
(
f, k(f), i

)
where 0 < i ≤ k(f). Let u be the node in the LRG, that corresponds to the label L. Then for

76

4.6. Construction of the LRG

Figure 4.8: Labelling at a fork.

each new label Li derived from L, a new node vi is added to the graph. Correspondingly, a new

labelled edge (u, vi) is added to the graph, labelled with the element
(
f, k(f), i

)
.

4.6.2 Labelling a join

Figure 4.9: Labelling at a join.

When a join is encountered in the petri-net, it is assigned a label L that is the union of the

labels assigned to its predecessors. Correspondingly, a new node v is created in the LRG. Let

Li be the label assigned to the ith predecessor, represented as node ui in the LRG. For each such

node, a new unlabelled edge (ui, v) is created in the graph.

Sequences of unlabelled edges

The construction of a join is the only step that introduces unlabelled edges in the graph. This

may result in sequences of unlabelled edges, which are inconvenient to handle in operations

that are described in later sections. Hence the introduction of a new join in the LRG is followed

by an operation that eliminates sequences of unlabelled edges of length two or more.

At the newly created node v, let (u, v) be an unlabelled edge incident on v. If the node

u is a join, then the incoming edges at u are unlabelled. For each edge (ti, u), we create an

unlabelled edge (ti, v) and then remove the edge (u, v). Since this elimination is performed

for every new node, the node ti cannot have an incoming unlabelled edge. Such an unlabelled

sequence of length two would have been eliminated when the join u was created.

77

4. Contention-free Reuse of Hardware

Reductions at a join

If a new join is the associate join of some fork f , then label assigned to it must be reduced by

eliminating label elements that indicate the fork f . This reduction is implemented in the LRG

as follows.

Figure 4.10: Reductions at a join.

LetL be the label assigned to the join, and represented by node v in the LRG. IfW = U∗V

is a reducible subset of L, then L is reduced by replacing the subset W with U . W is actually

the union of labels represented by a subset Ru of the predecessors of the join. U corresponds to

a node u, such that for each node wi ∈ R, (u,wi) is a labelled edge in the LRG. The reduction

is equivalent to replacing these labelled edges with a single unlabelled edge (u, v).

The reduction at a new join node is implemented by partitioning its predecessors into

subsets that have a common parent, such as set Ru in Figure 4.10. Every member wi of such

a subset has a single incoming labelled edge (u,wi) from the common parent node u. The

incoming edge cannot be unlabelled since edge (wi, v) is unlabelled, and the construction of the

LRG does not allow a sequence of unlabelled edges. The labels on the edges are of the form(
f, k(f), i

)
, for some fork f . If |R(u)| = k(f), then the labels corresponding to the nodes in

R(u) form a reducible subset in L. We reduce this set as follows:

1. for each ri ∈ R(u), remove the edge (ri, v)

2. create an unlabelled edge (u, v) in E

After each reduction, we recompute the set of predecessor for the node v, and attempt

further reduction. If at the end of all reductions, a single unlabelled incoming edge (u, v)

remains incident on the new label v, then we eliminate the label v itself and assign u as the label

of the join.

78

4.6. Construction of the LRG

4.6.3 Uniqueness of nodes

Theorem 4.6.1 There exists a one-to-one correspondence between the set of labels used in

labelling the elements of a Type-2 petri-net and the set of nodes in the corresponding LRG.

Proof:

Labelling at a fork: The labelling scheme creates a new node in the LRG whenever a fork is

encountered. Each fork is associated with a unique identifier when its successors are labelled.

Thus, the labels created by extending the label at a fork are guaranteed to be unique.

Labelling at a join: A new node may be created when a join is encountered, unless the node

is removed due to a reduction. But a join in the petri-net is not associated with any unique

identifier. Labelling at a join can potentially generate a label that has already been assigned to

some other join. If a new node is created in the graph for this join, then the graph contains two

nodes that represent the same label. We show that this is not possible, as follows.

Consider two joins j1 and j2 that are assigned the same label. We consider the two cases

where the NCA region R = NCA(j1, j2) is either a fork region or not.

Case 1: If R is not a fork region, then each join lies in a distinct fork region. Consider the

two regions R1 @∗ R and R2 @∗ R, that are the parents of j1 and j2 respectively. All

the labels assigned in a fork region contain label elements that are unique to that region.

Only the entry fork and the exit join have labels that do not contain elements unique to

that fork region. Thus, for j1 and j2 to have the same label, they must be the exit joins of

their respective regions.

Let f1 and f2 be the entry forks of these two fork regions. Clearly, NCA(f1, f2) =

NCA(j1, j2) = R. The forks f1 and f2 are assigned the same label as j1 and j2, and in

fact, this is the label assigned to the entry of R. The node in the LRG that represents

this label is reused when labelling the two forks. Since j1 and j2 are their associate joins

respectively, no new node is created when labelling them, as seen in Section 4.6.2.

Case 2: IfR is a fork region, the two joins j1 and j2 must lie on the same path from the entry of

the NCA. To prove that, assume that no such path exists. Consider a pair of paths P1 and

P2 that reach j1 and j2 respectively. Since the two paths must have diverged at some fork

79

4. Contention-free Reuse of Hardware

in R, each path has labels extended by a unique label element. Hence if the assumption

is true, the two joins cannot have the same label.

Let P be the path from the entry fork that passes through both j1 and j2 and let j1 be the

join that occurs first on the path. If there was a path P ′ from the entry that passed through

j2 but not through j1, then the label assigned to j2 would contain sequences that are not

present in the label assigned to j1. Thus every path that reaches j2 must pass through j1

or, in other words, the all the paths that converge at j2 must have diverged from path P

itself at forks that occurs after j1. There exists a fork f ′ on this path which is the associate

fork of join j2. This fork is assigned the same label as j1, reusing the corresponding node

in the LRG. Similarly, j2 is assigned the same label as f ′, using the same node in the

LRG. Thus no new node is created in this case as well.

4.7 Compatibility using the LRG

Definition 4.7.1 Two nodes u and v in the LRG are said to be compatible, if only if one of the

following is true:

1. There is a path from u to v or vice versa.

2. There exists a node a in the LRG, from which u and v are reachable along non-intersecting

paths such that one of the following is true:

(a) One or both paths begin with an unlabelled edge.

(b) The labels on the first edges in the paths indicate different forks.

Theorem 4.7.1 Two labels L1 and L2 are compatible if and only if the corresponding nodes u

and v in the LRG are compatible.

Proof:

Part 1: If the two labels are compatible, then there exist sequences l1 ∈ L1 and l2 ∈ L2, that

satisfy the conditions for compatibility of labels, stated in Definition 4.4.1.

Case 1: L1 = Φ or L2 = Φ

If either label is empty, then the corresponding node is the root node, and there must

be a path that reaches the other node, and hence they are compatible.

80

4.7. Compatibility using the LRG

Case 2: l1 ≤ l2

Let n be the node at which l1 was created as an extension due to a fork. If the entire

label L1 was created at n itself, then u = n. Else, u is a union node such that there

is an unlabelled edge (n, u) in the LRG. If l1 = l2, then by the same logic, either

v = n, or there exists an unlabelled edge (n, v) in the LRG. If l1 < l2, then a path

with at least one labelled edge exists from n to v. If u = n, then there is a path from

u to v, else n is the node a described in Definition 4.7.1. A similar deduction can be

made in the case where l2 ≤ l1. In either case, the two nodes are compatible.

Case 3: x.e1 ≤ l1 and x.e2 ≤ l2, where e1 and e2 indicate different forks.

Let n represent the node where x is created, possibly as the extension of some

existing sequence. If x is empty, then n is the root node. The label elements e1

and e2 represent distinct labelled outgoing edges at node n. The nodes u and v

respectively are reachable from n along paths that start with these edges. Thus, n is

the node a described in Definition 4.7.1, and the two nodes are compatible.

Part 2: If the two nodes u and v are compatible, we show that the corresponding labels L1 and

L2 are also compatible.

Case 1: v is reachable from u along some path in the LRG. If u is the root node, then L1

and L2 are compatible.

If there is any labelled edge on the path, then for every sequence l1 ∈ L1, there

exists a label l2 ∈ L2 which is an extension of l1. In the absence of any labelled

edges, l2 is the same as l1. In either case, the two labels are also compatible.

Case 2: There exists a node a from which u and v are reachable along non-intersecting

paths as defined in Definition 4.7.1. If L is the label at a, for every sequence l ∈ L,

there exist sequences l1 ∈ L1 and l2 ∈ L2, such that l ≤ l1 and l ≤ l2.

If u is reachable from a along an unlabelled path, then that path consists of a single

unlabelled edge. The corresponding label L1 is a union that contains L, and hence

l1 = l. Similarly, if v is reachable along an unlabelled path, then l2 = l.

If the two paths start with edges labelled e1 and e2, we have l1 = l.e1 and l2 = l.e2,

where e1 and e2 indicate different forks.

Thus, in all cases, the labels are compatible.

81

4. Contention-free Reuse of Hardware

4.7.1 Testing for compatibility

Given a node u and a node v in the LRG, they are trivially compatible if u = v. Otherwise, we

determine compatibility by traversing the graph from each node towards the root in a breadth-

first manner using a queue. Let the traversal begin with u. For each node m, we maintain a

list eu(m) that contains outgoing edges at m, such that there is a path from m to u along each

edge in eu(m). Initially, all the nodes are white. The queue is initialised by adding node u, and

colouring it black. While the queue is not empty, we remove one node m from the queue, and

perform the following steps at each predecessor p:

1. If p = v, the two nodes are compatible. Return this result.

2. Add the edge (p,m) to the list eu(p).

3. If p is white, add it to the queue, and colour it black.

When the queue is empty, we restart the breadth-first traversal from the node v. The colour

of all nodes is reset to white and node v is coloured black. While the queue is not empty, we

remove one node m from the queue, and perform the following steps at each predecessor p:

1. If p = u, the two nodes are compatible. Return this result.

2. Compare the edge (p,m) with each edge in eu(p). If one or both edges are unlabelled,

or the labels indicate different forks, then p is the ancestor node a mentioned in Defini-

tion 4.7.1 and the two nodes are compatible. Return this result.

3. If p is white, add it to the queue, and colour it black.

4. If the traversal continues until the queue is empty, then the two nodes are not compatible.

Return this result.

4.7.2 Identifying sets of compatible operations

The labelling scheme is a complete representation of the compatibility of operations in a Type-2

petri-net. A label L represents a set of operations that are all compatible with each other, and it

is possible to find labels that represent other sets of operations that are compatible with this set.

The compatibility of labels can be represented as edges in a compatibility graph where

nodes represent labels. A clique in this compatibility graph represents a set of labels that are

82

4.7. Compatibility using the LRG

mutually compatible. But an exhaustive search of the LRG to build such a compatibility graph

is not feasible. Even after building such a graph, the implementation must also build a clique

cover for it. Instead, we use the structure of the LRG in a simple greedy algorithm to generate

a clique cover.

The definition of compatibility in the LRG is based on the existence of a node with outgo-

ing edges, such that at least one of the edges is unlabelled, or the labels indicate different forks.

All the nodes reachable from one edge are pair-wise incompatible with all the nodes reachable

from the other edge. In addition, all the nodes reachable from a node are compatible with that

node. This property can be used to build up a clique cover.

We perform a postorder traversal of the LRG, possibly creating a new clique when visiting

a node. Let S(n) represent the set of candidate cliques at a node n. For every node n, S(n) is

initially empty. We visit each n as follows:

1. If n is a leaf, create a new clique C, and insert n in it. Insert C in the set S(n), and return.

2. For an internal node n, create a set of candidate nodes containing all the successors of n.

Extract pairs of candidates m1 and m2, such that the edges (n,m1) and (n,m2) satisfy

the conditions for compatibility. Each clique in S(m1) is compatible with each clique in

S(m2). Extract pairs of cliques C1 ∈ S(m1) and C2 ∈ S(m2), and create a new clique

C = C1 ∪C2 for each pair. Insert this clique in S(n). Extract all the remaining cliques in

S(m1) and S(m2) and insert them in S(n).

3. When all candidate pairs are exhausted, extract the remaining candidates one at a time.

For each candidate m, extract all the cliques in S(m) and insert them in S(n).

At this point, the set S(m) for each successor m is empty. Promoting all the cliques

from S(m) to S(n) ensures that these cliques are considered as candidates when visiting

a predecessor of n. The cliques are removed from S(m) to ensure that they are not reused

when m is visited by some other predecessor.

4. Select a clique C ∈ S(n), and insert n in it. If S(n) is empty, then create a new clique C

and insert n in it.

In Figure 4.11, we show a possible cover that would be generated for a given LRG. Note

that the algorithm does not mention any specific criteria when choosing cliques in step (2).

83

4. Contention-free Reuse of Hardware

Figure 4.11: A cover generated for the example LRG.

These criteria can be based on external inputs, possibly including feedback from the later im-

plementation stages. The algorithm utilises every available opportunity to create larger cliques

from existing cliques. External factors can also influence this behaviour, since in some cases it

is possible that limiting the size of a clique could lead to a better implementation.

4.8 Summary

This chapter presents an effective demonstration of the ease with which an AHIR specification

can be analysed. The optimisation presented exploits the structure of the Type-2 petri-net to ex-

haustively identify opportunities for sharing data-path operators without the need for arbitration.

Such pairs of operations are termed as “compatible operations”.

We define compatibility in terms of paths in the Type-2 petri-net, combined with the hi-

erarchy of regions. A direct use of this definition to determine compatibility results in expo-

nential complexity. Instead we introduce a labelling scheme built around a structure called the

label representation graph (LRG). This structure supports a linear-time algorithm for identify-

ing compatible operations. We use a greedy algorithm that assigns hardware resources to sets

of mutually compatible operations based on the label representation graph.

84

Chapter 5

Implementation and Results

We have built an integrated flow that translates C programs to synthesisable VHDL using AHIR

as an intermediate step. This combined flow can be divided into three stages — software opti-

misation, generation of an AHIR specification, and implementation in hardware. The software

optimisation is handled by the LLVM compiler framework. The input C program is compiled

to the internal LLVM representation, and then optimised. The optimised program is then trans-

lated to an AHIR specification by a customised LLVM back-end. In Appendix A, we describe

the practical details of implementing such a flow.

Figure 5.1: Generating AHIR from a C program.

In Figure 5.1, we show the translation process from a C program to a complete AHIR

specification. The LLVM back-end generates an unlinked circuit in AHIR. This circuit contains

one module for each function in the C program, but inter-module communication is absent.

The AHIR linker then generates an inter-module link layer based on the function calls in the

program along with a memory map that describes memory locations hard-coded in the circuit.

85

5. Implementation and Results

5.1 Support for the C language

The current implementation supports a practical subset of the C language, although there is no

fundamental restriction on supporting the entire C language. The following high-level features

are available in the tool-chain:

Scalar data-types: Scalar data-types that have a width upto 32 bits are fully supported. This

includes bool (single bit), char (8 bits), unsigned char, int (16 bits), unsigned int, long

(32-bits), unsigned long and single precision floats (32 bits). Larger data-types can be

supported, but the current tool-chain cannot produce the multiple loads and stores re-

quired to access these data-types from external memory.

Pointers, structures and arrays: The AHIR tool-chain simply treats pointers as 32-bit un-

signed integer values. As a result, address generation instructions in the LLVM IR are

mapped to simple arithmetic operators in an AHIR data-path. Arrays, structures and their

combinations are all completely supported.

Dynamic memory allocation: Dynamic memory allocation is usually represented by the malloc()

system call. Since there is no external “operating system” in AHIR, memory allocation is

directly handled by the program itself. The program can use a suitable implementation of

malloc() as along as it guarantees that if the function returns a non-NULL address then

the address returned is actually usable for storage in the external memory subsystem.

The following features were not implemented purely for practical reasons:

Recursion: Recursion requires a stack to store the current state of a function. This stack is

limited by two factors: the amount of storage available for the stack, and the ease of

accessing the state of the function. If the stack is implemented in external memory, its

size is only limited by the width of the memory addresses, which is the same in AHIR

as in a microprocessor. But the state of an AHIR module is distributed throughout the

elements in the data-path and the control-path, which makes it particularly inaccessible.

As a result, the current implementation does not support recursion.

Variable arguments: Most programming languages allow a program to have a function call

where the number and type of arguments is not known at compile time. AHIR can support

86

5.2. Simulation and Synthesis

this with an appropriate mechanism for packaging arguments when passed through the

inter-module link layer, but this is not implemented yet.

Function pointers: Function pointers allow a program to have a function call where the iden-

tity of the invoked function is not known at compile time. The function pointer can be

used as a unique identifier of the function when a call is routed through the inter-module

link layer. The current implementation does not support this due to practical limitations,

although function pointers play an important role in creating large programs.

Library calls: Most applications are built on existing libraries that provide commonly used

features in the form of an API. Software programs use these libraries in two forms: as

statically linked, where the relevant functions are copied into the body of the program, or

dynamically linked, where the library functions are made available when required. The

current implementation can only support static libraries since the compiler must have

access to every function in the program when generating the AHIR specification.

I/O ports: The concept of I/O ports in a program is usually implemented as a set of functions

that have side-effects that are hidden from the program. An example is the standard input-

output library in C which provides functions such as printf() and scanf() for exchanging

data with the outside world. Similar I/O facilities can be made available in an AHIR cir-

cuit by mapping the standard I/O functions to specialised operators that provide a suitable

implementation of the interaction specified by these functions.

5.2 Simulation and Synthesis

The AHIR tool-chain can generate two different implementations of the input specification: a

SystemC model and a synthesisable VHDL circuit description as shown in Figure 5.2. The

output of the SystemC simulation is a trace file that tracks all events in the circuits including

request and acknowledge symbols, and load/store operations. This memory access trace has

been used in a related project[22] that investigates the nature of memory accesses generated by

different programs.

87

5. Implementation and Results

Figure 5.2: Generating SystemC and VHDL descriptions.

5.2.1 Synthesisable VHDL implementation

The VHDL generator converts an AHIR specification into a synthesisable VHDL description.

The generator creates one entity for every control path, data path and link layer in the AHIR

specification. These entities instantiate components described in a separate cell library. The

generator also creates a test-bench using the memory map provided by the linker. In Ap-

pendix B, we list an example that starts with a simple C program and results in a set of VHDL

files that describe a hardware implementation of the input C program.

The VHDL implementation is a clocked circuit, where the control-path is a Mealy machine

and the data-path is a Moore machine. Each operator in the data-path is mapped to a clocked

entity provided by the cell library. Transitions in the control-path are converted to combinational

logic, while places are translated to clocked latches. These latches use a bypass mechanism to

implement a zero-delay change in state.

88

5.3. FPGA implementation

5.2.2 Evaluation of generated circuits

The high-level compiler generates an RTL description in VHDL, that can either be mapped to

an FPGA or an ASIC. We have tested the generated circuits on both these platforms, using a

number of C program as representatives of various application domains:

• Linpack (high-performance computing)

• Red-Black Trees (high-level data-structures)

• FFT (digital signal processing)

• A5/1 (cryptography - stream cipher)

• AES (cryptography - block cipher)

5.3 FPGA implementation

In the first set of experiments, we compare the performance of FPGA implementations gener-

ated by the compiler with two extremes — equivalent programs running on a microprocessor

(Intel Pentium IV running at 2.4GHz), and hand-crafted circuits that implement the same be-

haviour (results reported in the literature). The VHDL descriptions were mapped to the Xilinx

Virtex-II (part number xc2v8000-5ff1152) using the Xilinx ISE software kit.

5.3.1 Performance

We use the following metric to compare the performance of the three different platforms for

each program:

performance = throughput / area

Throughput is defined as the number of tasks completed in one second. The notion of a

task is specific to each program. For example, in Linpack, the factorisation and solution of one

matrix is considered one task. Hence we define the throughput of a Linpack implementation as

the number of matrices factorised in one second. Area is measured in terms of the number of

equivalent gates. The circuits used in the experiments are generated after enabling arbiterless

sharing in order to reduce the area.

89

5. Implementation and Results

Note: The following approximations were used when comparing the generated circuits with

the Pentium IV processor:

1. The reported size of the Intel Pentium IV is 42 million transistors[23]. Assuming an

average ratio of 4 transistors per gate, this number is considered to be equivalent to 10

million gates.

2. The size of an FPGA implementation is measured in terms of the slices used. We have

assumed an average ratio of 5 gates per slice[24] in estimating the size of the circuit in

terms of gates.

5.3.2 Static sharing of hardware

The experiments also demonstrate the effect of sharing hardware using the optimisation de-

scribed in Chapter 4. We use the same metric described in the previous section for evaluating

the performance of the circuit. Since we are comparing two versions of the same circuit, a

simpler definition of the metric can be used:

performance = frequency / slices

5.3.3 A note on the implementation

The hardware circuits generated by our synthesiser are constructed from a predefined cell li-

brary. The library incorporates a number of simplifications as follows:

1. Every operation in the data-path takes one clock cycle. As a result, a floating-point mul-

tiplication takes the same time as a boolean function.

2. Operators for the integer type have been implemented with a fixed width of 32 bits. Types

with smaller widths are padded, while types with larger widths are not supported.

3. The memory subsystem is single-ported. All the load-store operators defined by the cir-

cuit are connected to the memory through an arbiter. Also, the current compilation pro-

cess serialises all memory operations, as described in Section 3.3.3.

These simplifications partially account for the suboptimal results in our experiments. A

better implementation of the library components can improve the results in three areas: operat-

ing frequency, latency in terms of clock cycles, and the accuracy of the computations.

90

5.3. FPGA implementation

5.3.4 Results

We present the measurements for each experiment in the form of two tables. The first table

shows the effect of arbiterless sharing on the size and operating frequency of the circuit. The

second table compares the performance of the AHIR circuit with the Pentium-IV, and also with

hand-crafted circuits in some cases. In the first table, the following observations are noteworthy:

1. When sharing is enabled, the actual size of the circuit is always larger than the estimated

size of the circuit. This indicates the increased complexity in routing since the number of

wires connected to an operator increases when it is shared.

2. For some programs, the operating frequency of the circuit improves considerably when

sharing is enabled. This is likely to be the result of a reduction in the number of load/store

operators, which reduces the delays in the memory access arbiter.

Linpack The Linpack benchmark[25] factorises a matrix using Gauss elimination and then

solves a system of equations using those factors. We measure performance by factorising

a 100 × 100 single-precision matrix. The throughput is the inverse of the time taken to

factorise and solve one matrix. The Linpack program is designed to maximise the use of

the processor cache. Hence the performance results for Linpack are especially relevant

for a comparison between an AHIR circuit and the Pentium-IV.

Slices Frequency Performance

Post Synthesis Post PAR (MHz) (Hz/slice)

w/o sharing 17710 17300 20.861 1205

w/ sharing 10459 12999 21.365 1643

gain (%) 41 25 2 36

Table 5.1: Synthesis results for Linpack.

91

5. Implementation and Results

AHIR P-IV

cycles 4006k 6870k

time (ms) 188 2.86

gates 65k 10M

throughput 5.319 350

throughput / area 8.18× 10−5 3.50× 10−5

AHIR is - 2.34× better

Table 5.2: Performance comparison for Linpack.

Red-Black Trees The source for implementing a Red-Black tree was obtained from the project

libredblack [26] available under the LGPL. The version used supports deletion, in-

sertion and searching in a Red-Black tree. The source has been modified to use a simple

built-in memory manager instead of the malloc() system call. New nodes are assigned

from a pre-allocated array of nodes, whose size can be modified at compile time through

a macro. Performance was measured by inserting 1000 distinct nodes into an empty tree.

The throughput is the inverse of the total time taken for these 1000 insertions.

Slices Frequency Performance

Post Synthesis Post PAR (MHz) (Hz/slice)

w/o sharing 9969 10659 20.360 1910

w/ sharing 6098 7958 44.189 5552

gain (%) 39 25 117 191

Table 5.3: Synthesis results for Red-Black Trees.

AHIR P-IV

cycles 389k 590k

time (ms) 8.8 0.246

gates 40k 10M

throughput 114 4065

throughput / area 2.85× 10−3 0.4065× 10−3

AHIR is - 7× better

Table 5.4: Performance comparison for Red-Black Trees.

92

5.3. FPGA implementation

FFT The FFT implementation was based on a program provided in Numerical Recipes in

C[27]. The program is independent of the radix of the FFT, which is supplied as an

argument. We tested this circuit for a 64-point FFT performed on a complex signal. The

throughput measured is the inverse of the time taken to complete the 64-point FFT.

Slices Frequency Performance

Post Synthesis Post PAR (MHz) (Hz/slice)

w/o sharing 15794 14960 21.429 1432

w/ sharing 6906 7466 21.046 2818

gain (%) 56 50 -2 97

Table 5.5: Synthesis results for FFT.

AHIR P-IV

cycles 8k 41k

time (µs) 380 17

gates 37k 10M

throughput 2631 58824

throughput / area 0.0711 0.00588

AHIR is - 12× better

Table 5.6: Performance comparison for 64-point FFT.

93

5. Implementation and Results

A5/1 Stream Cipher The A5/1 stream cipher was implemented by Prakalp et al.[28]. The

throughput in this case is the number of bits produced per second in the keystream. This

is equal to the inverse of the time required for generating one bit of the keystream. The

results for the A5/1 implementation are especially relevant for a comparison with a hand-

crafted circuit. There is no scope for architectural variations in the hand-coded imple-

mentation, since it consists of just three LFSRs along with some combinational logic.

This provides a clear target for comparison and makes it easy to identify space and time

overheads incurred by the automated design flow.

Slices Frequency Performance

Post Synthesis Post PAR (MHz) (Hz/slice)

w/o sharing 1684 1701 65.351 38419

w/ sharing 1516 1926 85.346 44312

gain (%) 10 -13 31 15

Table 5.7: Synthesis results for A5/1 stream cipher.

AHIR RTL[29] P-IV

cycles 21 1 234

time (µs) 0.246 0.0053 0.0975

gates 9630 160 10M

throughput (Mbps) 4.065 188.3 10.26

throughput / area 0.422× 103 1.177× 106 1.026

AHIR is - 2800× worse 520× better

Table 5.8: Performance comparison for A5/1 stream cipher.

Note that the literature for the hand-crafted implementation reports only the hardware

required for the computational core. The hardware involved in moving data to and from

the core is not mentioned. Assuming a 3× overhead for this, AHIR is approximately

900× worse than the hand-coded version.

The number of cycles used by the microprocessor is larger than those required by the

AHIR circuit by an order of magnitude. The circuit was able to execute a number of

operations in parallel during most calculations. This also accounts for the relatively small

gains obtained when sharing hardware.

94

5.3. FPGA implementation

AES The AES encryption program was implemented by Prakalp et al[28]. It uses a round-
based architecture with an 8-bit data-path. The results only report the hardware required
for encryption and not for decryption.

Slices Frequency Performance

Post Synthesis Post PAR (MHz) (Hz/slice)

w/o sharing 4906 5760 29.249 5077

w/ sharing 4302 5348 61.372 11475

gain (%) 12 7 110 126

Table 5.9: Synthesis results for AES block cipher.

AHIR RTL[30] P-IV

cycles 30.6k - 32k

time (ms) 0.5 - 0.0133

throughput (Mbps) 0.256 2.2 9.6

gates 26k 620 10M

throughput / area 9.85 3550 0.96

AHIR is - 360× worse 10× better

Table 5.10: Performance comparison for AES block cipher.

Performance comparison

In Figure 5.3, we compare the three implementations — a desktop processor, automati-

cally generated circuits and hand-crafted circuits — in terms of throughput per area. For

each program, the automatically generated circuit is better than the desktop processor by

an order of magnitude. But the performance is less than that of the hand-crafted circuits

by two or three orders of magnitude.

95

5. Implementation and Results

 0.0001

 0.01

 1

 100

 10000

 1e+06

Linpack R-B Trees FFT A5/1 AES

Throughput / Area
(jobs per second / gate)

P-4
AHIR

RTL

Figure 5.3: Performance comparison for the FPGA implementation

5.4 ASIC implementation
In the second set of experiments, we compare an ASIC implementation of each program with

an embedded low-power microprocessor — the Intel Atom N270. The ASIC implementation

is produced by a completely automated C-to-ASIC tool-flow — the VHDL description is first

compiled to a netlist by Synopsys Design Compiler, which is then translated to a layout using

Cadence Encounter. The flow targets the TSMC 180nm technology, using the OSU standard cell

library and CACTI models for SRAM[31]. The synthesis flow has the following enhancements

compared to the one used in the previous set of experiments:

• A memory subsystem that supports multiple load/store ports.

• Load/store operations may take multiple clock cycles once they are accepted by the mem-

ory subsystem.

• The ability to schedule concurrent load/store operations in the control-path based on a

static memory reference analysis of the input program.

We present a comparison in terms of two performance parameters — energy dissipated in

completing one task, and the product of the energy dissipated and the time taken to complete

96

5.4. ASIC implementation

one task. The same set of C programs was run on the Intel Atom, and also translated to hard-

ware: A5/1 stream cipher, AES block cipher, 64-point FFT, Linpack and Red-Black Trees. The

values for area, frequency and power dissipation for the Atom processor were obtained from the

corresponding datasheet. The measurements for the AHIR circuits were scaled from the 180nm

data to match the 45nm technology used in the Atom processor.

Table 5.11: Comparison with the Intel Atom N270

Area Freq Delay Power Energy
E×D

(mm2) (MHz) (ms) (mW) (µJ)

A5/1-Atom 25 1600 0.12µs 2500 298.44 nJ 35.63

A5/1-AHIR 0.10 285 0.07µs 9.22 0.61 nJ 0.04

AES-Atom 25 1600 0.036 2500 89.362 3.194

AES-AHIR 0.41 285 0.107 37.56 4.023 0.431

FFT-Atom 25 1600 0.022 2500 55.64 1.238

FFT-AHIR 0.32 180 0.035 13.11 0.464 0.016

LPK-Atom 25 1600 7.90 2500 19740 155875

LPK-AHIR 1.69 165 9.42 30.33 285 2691

RBT-Atom 25 1600 0.36 2500 891.89 318.19

RBT-AHIR 1.13 165 2.47 17.00 42.01 103.80

 1

 10

 100

 1000

A5/1 AES FFT LPK RBT

486.57

22.21

119.88
69.09

21.23

(a) Energy
(Atom

AHIR

)
 1

 10

 100

 1000

A5/1 AES FFT LPK RBT

873.34

7.41

75.36
57.91

3.07

(b) Energy × Delay
(Atom

AHIR

)
Figure 5.4: Comparison of AHIR circuits with the Intel Atom N270

In Table 5.11, we show the results of experiments that compared the generated circuits

with the Intel Atom N270 processor. The energy used for completing a job is equivalent to the

97

5. Implementation and Results

throughput achieved for each watt of power supplied, commonly termed as “performance per

watt”. The graphs in Fig. 5.4 show the ratio of the performance of the AHIR circuit to that of

the Intel Atom for each program. From the results, it is clear that the AHIR circuits are better

than the Intel Atom by at least an order of magnitude in terms of energy dissipation.

5.5 Inference

The experiments demonstrate that AHIR can be used in translating programs from diverse ap-

plication domains to hardware circuits. The use of arbiterless sharing is effective in reducing

circuit area, inspite of a simple greedy algorithm that does not consider hardware overheads.

Circuits generated in AHIR are competitive with the same programs running on a micropro-

cessor, but the performance is less than that of hand-crafted circuits by two to three orders of

magnitude. This is accounted for by three factors — the lack of support for expressing par-

allelism in C, bottlenecks in the memory subsystem and inefficiencies in the cell library used.

Future work should be directed towards resolving these issues. Native optimisations in AHIR

will also lead to significant improvements.

98

Chapter 6

Conclusion and Future Work

Our work on high-level synthesis was aimed at exploring the design of a compiler flow that

meets the following requirements:

1. Allow programmers to create executable specifications using existing software practises.

2. Guarantee a correct implementation.

3. Enable the design of optimisations that can scale with the size of the system.

We have presented an approach that achieves these goals by decoupling the software com-

pilation phase from the hardware compilation phase in the hardware synthesis flow. Our ap-

proach uses an intermediate representation called AHIR to implement this decoupling.

AHIR sufficiently encapsulates the low-level details of hardware implementations to be

easily targeted by a software compiler phase. At the same time, an AHIR specification is always

a single step away from a hardware implementation. AHIR specifies a set of constraints on

delays in order to guarantee a correct implementation. It is easy to meet the constraints by

suitably padding the delays in the implementation.

A large class of programming languages can be easily translated to a CDFG form. We

provide a straight-forward method of translating this CDFG to an AHIR specification, and prove

that the translation process itself is correct, i.e., an AHIR specification generated from a CDFG

by this process always implements the behaviour specified by the CDFG.

AHIR factorises a circuit into separate control and data paths. This decoupling is the key

to implementing optimisations that can scale with the size of the system. In particular, the

Type-2 petri-net used for the control-path has a regular structure that is easy to analyse. This

99

6. Conclusion and Future Work

is demonstrated by our work on an optimisation that reuses operators in the data-path using a

static analysis of the control-path. The complexity of the auxiliary structures and algorithms

used by the analysis is close to linear with respect to the size of the control-path, and hence this

optimisation is scalable to large systems.

AHIR also decouples the implementation of a memory subsystem from the actual circuit.

A circuit can have an arbitrary number of load and store operators, and the memory subsystem is

required to ensure that each request is eventually serviced. The implementation of the memory

subsystem itself can be explored independently, without affecting the design of the circuit.

Summary

We have established a high-level synthesis flow with the following features:

1. An intermediate representation that is easy to analyse and transform using methods that

can scale with the size of the circuit. The scalability is made possible by factorising the

intermediate representation into three components: control, data and storage.

2. A verifiable path from high-level programs to the abstract representation that is built on

existing software compilation techniques.

3. A set of constraints to ensure correctness when translating the intermediate representation

to a hardware implementation. These constraints are easy to satisfy in practise and allow

considerable freedom to the hardware implementer.

These features ensure that the entire path is verifiable and scalable, thus providing a com-

petitive option for high-level synthesis.

6.1 Looking forward

Future research work in AHIR needs to target two goals in order to provide a viable alternative

for hardware design. One is to extend the reach of the compiler in terms of programming

languages and design paradigms, and the other is to improve the quality of hardware generated.

100

6.1. Looking forward

6.1.1 A universal design platform

AHIR can potentially be used as a universal design platform that unifies software compilation

(translating programs to executables) with hardware compilation (synthesising circuits from

programs). The expressive power of AHIR is evident at two levels: as a framework for ex-

ploring hardware architectures, and as a target for the design and implementation of high-level

languages. A combination of these two aspects will result in a compiler flow that can map

various classes of high-level languages to different low-level architectures.

Hardware Architectures

An AHIR specification is a primitive representation of the intended task, in terms of the se-

quence of operations and the resources required for them. The representation itself does not

contain low-level details about the implementation. Hence, the synthesis flow can be targeted at

any architecture by mapping the AHIR specification to suitable building blocks available in the

target architecture. In addition, a synthesiser can also generate application specific architectures

that are suitable for a given specification.

Support for various languages

The combination of a data-path and control-path in AHIR that interacts with a memory subsys-

tem can be used to describe a microprocessor. The Type-2 petri-net used in AHIR is powerful

enough to express any sequence of instructions that can be executed on a processor.

Our experiments demonstrate that AHIR can be used to compile imperative languages,

with suitable implementations for specific features. Functional programming languages also

can be implemented in AHIR using techniques similar to those used in microprocessors. The

implementation must tackle issues similar to those seen in a microprocessor, such as emulating

a stack in the memory address space, managing communication of function arguments, man-

aging state for closures and co-routines, etc. AHIR can also support synchronous languages

such as Esterel. The Type-2 petri-net is sufficient to express Esterel programs, with a suitable

convention for implementing synchronous operations.

Further research should be aimed at exploring the practical aspects of implementing these

languages and at providing the theoretical background for verifying their implementations.

101

6. Conclusion and Future Work

6.1.2 Hardware optimisations

The current implementation has only been tried on small programs that consist of a few func-

tions. AHIR can be used to generate hardware descriptions for large systems starting from

high-level programs. The compiler must be able to generate implementations that deliver good

throughput while occupying acceptable amounts of resources. These two parameters are usu-

ally traded-off with each other, since faster computations come at the cost of more hardware,

and vice versa. AHIR provides many opportunities for creating transformations that improve

the final circuit. We describe two of these as an example here.

Pipelining

Figure 6.1: Synchronous pipeline in a Type-2 petri-net.

In the current implementation, parallelism is limited to the instructions within each basic

block in the original program. Small sets of operations are triggered in parallel, when there are

no dependences between them. But the parallelism allowed by a Type-2 petri-net is richer than

this instruction-level parallelism. A control path can include a synchronous pipeline, as shown

in Figure 6.1. The three regionsA,B andC represent stages of the synchronous pipeline, which

is managed by the fork and join.

Shared data-paths

The presence of the internal link layer makes it possible to share data-paths across different

modules, as shown in Figure 6.2. In a statically shared data-path, the control-paths using it are

guaranteed to be mutually exclusive. All the resources available in the data-path can be shared

with no contention.

102

6.1. Looking forward

Figure 6.2: A shared data-path.

In a dynamically shared data-path, multiple control-paths can be active at the same time.

The values associated with each control-path must be preserved, which constrains the sharing

of registers. In addition, contention between control-paths for a shared resource will result in

arbitration overheads. Due to these overheads, dynamic sharing is less attractive than static

sharing. But dynamic sharing is more common in practise, in the sense that multi-processing

is equivalent to a single data-path (the microprocessor) being shared by multiple control-paths

(the processes running on it).

6.1.3 Memory subsystems

In addition to optimised hardware, the performance delivered by the memory subsystem is

critical to the performance of the system. The high-level synthesis has to be coupled with an

automated memory design flow, that generates application-specific memory subsystems that

can keep up with the hardware system.

Some work has been done by related projects, towards developing simple performance

models[32] for memory subsystems. Such models will support an integrated memory sub-

system design procedure that can explore large areas of the design space in a feasible manner.

For a given application, the design process may be parametrised by the properties of the ex-

pected memory access trace[22].

103

Appendix A

Implementation of a High-level Synthesis

Flow using AHIR

We have implemented a straight-forward hardware synthesis flow that first translates a C pro-

gram to AHIR using a CDFG as an intermediate step, and then translates the AHIR specification

to synthesisable VHDL. This flow serves as a demonstration of how to build a competitive high-

level synthesis flow based on AHIR. There cannot be a single definitive flow that represents the

best way to translate high-level programs to hardware using AHIR. This is because any such

flow includes a number of design decisions that are not part of the AHIR specification itself.

The implementation was guided by the simple need to quickly develop a working com-

piler flow without expending too much effort on optimality. It may be possible to replace

various components of the implementation with better designs based on platform-specific and

application-specific choices. In the following sections, we describe the most important choices

faced when designing the flow, and the respective decisions made in the implementation.

A.1 Translating C to AHIR

AHIR is a transition step that divides the synthesis flow into two stages — generation of an

AHIR specification, and implementation in hardware. In Figure 5.1, we show the translation

process from a C program to a complete AHIR specification. The steps involved are as follows:

1. C to LLVM IR: The software optimisation is handled by the LLVM compiler framework.

The input C program is compiled to the internal LLVM representation, and then optimised

using tools available in the LLVM framework.

105

A. Implementation of a High-level Synthesis Flow using AHIR

Figure A.1: Generating AHIR from a C program.

2. LLVM IR to AHIR: A specialised back-end implemented using the LLVM framework

generates AHIR from the optimised LLVM form. The body of each function is repre-

sented as a CDFG, which is then translated to an AHIR module. This step produces two

outputs — a collection of AHIR modules and a memory map that provides information

about storage such as global variables and static allocation. This is not yet a complete

AHIR system, although all the important components are present.

3. AHIR linker: The output produced by the AHIR back-end is termed as “unlinked AHIR”

since it does not describe the interaction between the different modules. The system is

completed by the AHIR linker that takes a set of AHIR modules and produces an inter-

module link layer connecting them. In addition, the linker also assigns numerical ad-

dresses to the variables described in the memory map and updates the symbolic addresses

in the AHIR data-paths with these numerical addresses. The result is a “linked” AHIR

specification that describes a complete working system.

A.1.1 C to LLVM IR

The initial software phase of the compiler flow builds on the LLVM framework. The LLVM

front-end parses the input C program and converts it into the LLVM intermediate represen-

tation. High-level information about the behaviour of the program is available at this stage,

such as instruction-level parallelism (ILP), inter-procedure analysis (IPA) and memory refer-

ence analysis. Optimisations based on this information can have a significant impact on the

performance of the generated system. In the current implementation, we have enabled a set

of simple optimisations that are known to provide substantial improvements without any sig-

106

A.1. Translating C to AHIR

nificant trade-offs to consider. This includes register promotion, strength reduction, constant

propagation and common sub-expression elimination. Support for more complex optimisations

will require an analysis of their effect on performance as well as hardware cost. A different set

of optimisations may be applicable to every program being processed by the compiler.

A.1.2 LLVM IR to AHIR

The optimised LLVM IR is translated to AHIR using a CDFG as an intermediate step, as de-

scribed in Section 3.3. Nodes in the CDFG represent computations happening in the program,

but do not provide any details about the implementation. This ensures that a suitable implemen-

tation may be chosen either when translating the CDFG to AHIR, or when synthesising AHIR

to actual hardware. For example, the CDFG represents a function call as a single “call” node,

with data-edges which represent the arguments to be passed. The mechanism with which argu-

ments are actually passed to the called CDFG is not specified, allowing later stages to choose a

suitable implementation.

The CDFG is translated in a straight-forward manner to an AHIR representation. Each

node and edge in the CDFG is replaced with the corresponding fragment in AHIR to obtain

a complete AHIR module, as described in Section 3.4. The result of this construction is a set

of AHIR modules that correspond to the functions in the input program. This is termed as an

unlinked AHIR specification, which must now be linked to obtain a complete specification.

The AHIR template for a CDFG node consists of control and data-path fragments that im-

plement the behaviour of the node. This essentially decouples the control and data flow present

in the behaviour. The data-path fragment contains an abstract representation of an operator that

performs the same operation as the CDFG node. It is possible to keep this representation ab-

stract enough to hide all implementation details, or to lower the abstraction to specify the actual

mechanisms used. For example, the CDFG “call” node can be implemented in two different

ways in AHIR as described below.

A.1.3 Function calls

LLVM represents a function call as a single “call” instruction that lists the arguments that are

to be passed in the call. This representation is independent of low-level details such as the use

of registers or stack locations to pass the actual arguments to the called function. In a software

107

A. Implementation of a High-level Synthesis Flow using AHIR

compiler, these decisions are taken by the back-end that generates platform specific assembly

code. In our synthesis flow, we have implemented two different methods for passing arguments:

Direct communication: A function call can be implemented as a call operator in the data-

path that directly communicates with the called function. The operator has a number of

input data-edges that correspond to the arguments that are to be passed in the function

call. These arguments are driven on input/output ports connected to the inter-module link

layer, where an arbiter forwards the call arguments to the appropriate module.

Postboxes: A function call can also be implemented indirectly using reserved memory loca-

tions or postboxes. The linker assigns such locations to each module — the module

expects input arguments in these locations when it is called. During a function call, the

calling module first stores the relevant arguments in these postboxes using normal store

operators, and then sends a request symbol to the called module. When invoked, the

called module loads the argument values using normal load operators and then begins

execution. Finally, the return value is transferred using a similar postbox.

Either of these approaches is sufficient to implement a function call in AHIR. The former

results in more hardware, but reduces the time required for transferring a call, while the latter

manages to save on hardware, but takes longer to transfer the arguments. The high-level syn-

thesis flow can choose either of these approaches or even a mixture, depending on the nature of

the functions involved and the limitations of the target platform. Other mechanisms can also be

devised for passing arguments without affecting the correctness of the AHIR specification.

I/O Ports

The call operator is in fact just one use of a general input/output operator that allows the data-

path to communicate data (or cause side-effects) with the outside world. The load/store operator

is also a special version of this operator, while a computation is a further specialisation that

simply has no side effects. The input/output operator can also be used to implement other

features such as streams, channels, file I/O, etc.

A.1.4 AHIR Linker

The LLVM backend produces an unlinked AHIR specification which essentially consists of a

collection of modules, with no interaction specified between them. The AHIR linker completes

108

A.1. Translating C to AHIR

the system specification by producing two pieces of information — an inter-module link layer

that enables communication between the module, and an address assignment that maps all the

storage locations to actual addresses in the memory subsystem.

The Inter-module Link Layer

The inter-module link layer is used for communication between modules. It provides an arbiter

for each module, which is responsible for forwarding control and data messages to that module.

Each module has a single port on which it receives a call from the inter-module link layer. The

linker connects this port to the corresponding arbiter in the link layer.

A “call” operator in the AHIR data-path declares input and output ports for the call argu-

ments. When a call operator c in a module A calls a module B, it drives the required arguments

on its output port. The corresponding arbiter samples this port and then forwards the request

to the module B when it is free. When module B signals completion, the arbiter samples the

return value and forwards it to module A, thus completing the call. The arbiter uses a bypass

mechanism so that the arguments are available in the same clock cycle when they are sampled.

Hence the call is forwarded from A to B instantaneously if module B is free.

The arbitration policy used by the arbiter is not specified in AHIR — the current imple-

mentation uses a fixed priority scheme. Note that for a system generated from a C program,

there is no contention for a called module, since only one module is active at a time. As a result,

arbitration is unnecessary in the inter-module link layer and can be optimised away.

Memory Locations

The LLVM IR is an SSA representation that replaces variables in the program with values

produced by operations. These values are implemented in AHIR as registers at the outputs

of data-path operators. But the following kinds of variables result in actual locations in the

memory address space:

• Postboxes used for function calls.

• Global variables.

• Global or local arrays and structures.

• Local scalar variables whose address is assigned to pointers in the function — the LLVM

framework removes such variables from the SSA graph and replaces any access to them

with load/store operators.

109

A. Implementation of a High-level Synthesis Flow using AHIR

The unlinked AHIR produced by the LLVM back-end represents the addresses of these

variables as symbolic constants in the data-paths. The linker maps these variables to locations

in the memory address space, and updates the symbolic constants with the numerical values

of these locations. Note that typical compilers allocate local variables onto the stack. But the

current implementation does not have the notion of a stack. Instead, local variables are also

assigned permanent locations in the memory address space.

A.2 Synthesising AHIR

Figure A.2: Translating AHIR to synthesisable VHDL RTL.

The second phase of the high-level synthesis flow consists of translating the AHIR speci-

fication to a synthesisable VHDL RTL description. The VHDL circuit is created by translating

each element in AHIR — such as a control-path place or transition or a data-path operator — to

an instance of the corresponding entity from a pre-defined cell library. This is a straightforward

replacement that does not target constraints such as timing, power and area in the resulting cir-

cuit. The VHDL RTL is later synthesised to the target platform (such as ASIC or FPGA) using

an automated flow based on vendor-supplied tools.

A.2.1 Synchronous VHDL

We have implemented a VHDL cell library that provides the necessary building blocks in the

form of VHDL entities. These are used to create a synchronous implementation of the AHIR

specification where the control-path is a Mealy machine while the data-path is a Moore machine.

110

A.2. Synthesising AHIR

Data-path operator

Figure A.3: Data-path operator.

Each data-path operator is made of two parts as shown in Figure A.3 — a combinational

element for the intended operation, and an output register that interacts with the symbolic hand-

shake. The request-acknowledge signalling is implemented as pulses with a width of one clock

cycle. The data-path operator expects a pulse on its request input to begin execution, and emits

a pulse on its acknowledgement output on completion.

Control-path place

A control-path place is implemented as a flip-flop with bypass logic as shown in Figure A.4.

The place is set when any one of its input transitions fire, and reset when any one of its output

transitions fires. The implementation assumes that the petri-net is safe, and hence no check is

made for multiple input or output transitions firing.

Figure A.4: Control-path place.

The bypass logic ensures that the value at the input of the place is available at the output

in the same cycle when the flip-flop is enabled. Thus when an input transition fires, a pulse

arrives at the set input of the place and is immediately forwarded to the output transitions. If no

output transition fires, the flip-flop is set and the output remains high after the pulse disappears

111

A. Implementation of a High-level Synthesis Flow using AHIR

from the input. It will be reset when any of the output transitions fire. If an output transition

fires immediately, then a pulse arrives simultaneously on the reset input of the place, and the

flip-flop is never set.

Control-path transition

Figure A.5: Control-path transition.

The control-path transition is implemented as combinational logic that computes the log-

ical AND of all the signals from input places, and the acknowledge symbol if it exists. For a

safe petri-net, we can show the following:

1. The output of an idle transition is low when it is not enabled.

2. When the transition is enabled (all the input places are set) and the acknowledge symbol

arrives (if any), the output of the transition is high for exactly one cycle, and it resets all

its input places.

A complete AHIR fragment

In Figure A.6, we show the implementation of an AHIR fragment for a simple binary operator.

Place P0 enables the transition T0, which produces a pulse on the Req signal for the operator,

and also marks place P1. When the operator completes execution, it generates a pulse on the

Ack signal, which enables the transition T1.

Note that transition T0 is trivial since it has only one input place. It fires as soon as a pulse

arrives at the input of place P0, and asserts the reset signal. As a result, place P0 is never set,

and can be optimised away by the low-level synthesis flow.

112

A.2. Synthesising AHIR

Figure A.6: A complete AHIR fragment.

A.2.2 Operator reuse

The VHDL generator also optimises the AHIR representation using the arbiterless sharing

scheme described in Chapter 4. This optimisation maps multiple request-acknowledge hand-

shakes in the control-path to the same shared operator in the data-path. The cell library provides

a wrapper element that manages the incoming data and updates the appropriate output registers

for each handshake.

A.2.3 Scheduling and Allocation

There is no explicit scheduling step in the current implementation of the high-level synthesis

flow. When the CDFG is created from the LLVM IR, control-edges are introduced that represent

data dependences between operations, as described in Section 3.3. This implicitly schedules

the CDFG operations in an “as soon as possible” manner. The same scheduling is seen in the

113

A. Implementation of a High-level Synthesis Flow using AHIR

generated AHIR specification, since the translation process preserves the control-flow in the

CDFG — operators in the data-path are triggered as soon as their dependences are satisfied.

Also, the synthesis flow does not have a separate allocation or binding step when mapping

the AHIR specification to hardware. Each operator in a data-path is mapped to a new instance

from the cell library. The data-path operator may itself represent a shared operator created as

a result of arbiterless sharing. But the actual operator instantiated for this data-path operator is

not shared with any other operator.

Note that this is not the only way to schedule operations or to utilise available hardware

resources. Further improvements in the synthesis flow may use the results of research that

has already been done towards the problem of scheduling and allocation during synthesis. It

may be possible to modify the implicit ASAP scheduling scheme to use information available

about the actual delays between operations. Such a schedule can result in improved sharing of

operators since additional run-time information is available besides the existing static analysis

of the control-path.

114

Appendix B

An End-to-end Example

The high-level synthesis flow is implemented as a sequence of utilities that starts with a text

file containing the input C program and ends with a set of VHDL files describing the hardware

implementation:

llvm-gcc — The C front-end provided by LLVM for parsing the input C program.

irgen — A command implemented in the LLVM framework that optimises the LLVM byte-

code and generates an unlinked AHIR specification.

irlink — A linker that links the modules in the AHIR specification to produce an inter-

module link layer and a memory map.

irsyn — A VHDL generator that translates the linked AHIR specification to an RTL descrip-

tion, and also generates a test-bench based on the memory map.

B.1 Expected input

The tool-chain works with a single C file that contains all the functions of a program. The

program accepted by the tool-chain is subject to two restrictions:

1. The complete program must be present in a single file.

2. The complete DAG must contain a function called start, which denotes the root of the

call-graph. The function main cannot be used, since it triggers internal modifications by

the C front-end that are incompatible with the AHIR tools.

115

B. An End-to-end Example

For the following sections, we use an example file named mul.c containing the C pro-

gram listed in Figure B.1. The call-graph of the program consists of a single function call from

start to mul. The program accesses two integer global variables and returns their product.

start −→ mul

B.2 Source compiler

The input C source is parsed by the LLVM front-end, llvm-gcc. This produces a bytecode

file that contains the input program in LLVM’s native IR, which can be viewed using a utility

called llvm-dis provided by the LLVM framework. This utility displays the bytecode in the

form of a virtual assembly code as shown in Figure B.2.

B.3 AHIR-XML generator

The command irgen is an LLVM-based tool that reads the bytecode, converts it to AHIR,

and generates an XML file describing the AHIR virtual circuit. This is the unlinked form of

the AHIR specification which lacks two pieces of information — the interaction between the

modules, and the addresses assigned to various memory locations. In our example, the XML

file contains the call-graph of the program, a description of the global variables and descriptions

of the functions start and mul as shown in Figures B.3 and B.4.

B.4 AHIR linker

The AHIR linker produces a linked version of the input AHIR specification in a file called

mul linked.xml. This file contains a description of the inter-module link layer as listed in

Figure B.5 (referred to as “omega”), besides the module descriptions copied from the unlinked

XML. Additionally, a memory map is created in a file named mul map.xml as shown in

Figure B.6. The memory map is divided in two sections:

init — The initial state of the memory when the system is invoked.

fin — The expected state of the memory after execution.

116

B.5. VHDL generator

These sections are used to generate the test-bench for the VHDL implementation. The

test-bench initialises the memory subsystem with values specified in the init section and begins

execution of the system. The fin section specifies the final state of the memory, which is used

by the test-bench to verify the results after execution.

B.5 VHDL generator

The VHDL generator produces a hardware implementation by mapping each element in the

AHIR specification to a hardware entity. These entities are assumed to be available in an inde-

pendent library. The VHDL description consists of a number of files as listed below:

start cp.vhdl, etc — One control-path for each function.

start dp.vhdl, etc — Data-path.

start ln.vhdl, etc — Intra-module link layer.

system.vhdl — The final circuit, built using instances of all the above components.

testbench.vhdl — Used for testing the system.

117

B. An End-to-end Example

int a, b;

int start(void)

{

return mul(a,b);

}

int mul(int a, int b)

{

return a * b;

}

Figure B.1: Input C code.

118

B.5. VHDL generator

; ModuleID = ’mul.bc’

target endian = little

target pointersize = 32

target triple = "i686-pc-linux-gnu"

%b = weak global int 0 ; <int*> [#uses=1]

%a = weak global int 0 ; <int*> [#uses=1]

implementation ; Functions:

int %start()

entry:

%tmp = load int* %b ; <int> [#uses=1]

%tmp1 = load int* %a ; <int> [#uses=1]

%tmp21 = call int %mul(int %tmp1, int %tmp) ; <int> [#uses=1]

%unnamed_0 = ret int %tmp21

int %mul(int %a, int %b)

entry:

%tmp2 = mul int %a, %b ; <int> [#uses=1]

%unnamed_1 = ret int %tmp2

Figure B.2: LLVM byte-code.

119

B. An End-to-end Example

<callgraph id="mul" start="start">

<function id="mul" cp="mul_cp" dp="mul_dp" ln="mul_ln"

req="1" ack="1">

</function>

<function id="start" cp="start_cp" dp="start_dp" ln="start_ln"

req="1" ack="1">

<callsite id="call_mul_0" callee="mul" req="6" ack="6"

args_width="64" retval_width="32">

</callsite>

</function>

</callgraph>

<globals>

<global id="a" size="1" type="int">

<scalar type="int" size="1">0</scalar>

<address id="location_start_dp_global_a_1"/>

</global>

<global id="b" size="1" type="int">

<scalar type="int" size="1">0</scalar>

<address id="location_start_dp_global_b_0"/>

</global>

</globals>

Figure B.3: XML format: Call-graph and Global variables

120

B.5. VHDL generator

<cp id="mul_cp">

<trans id="entry.entry">

<src>place_1</src>

<snk>place_4</snk>

</trans>

...

</cp>

<dp id="mul_dp">

<wire id="oper_tmp2_int.wire" type="int"/>

<dpe id="oper_tmp2_int" operation="mul" type="int">

...

<smap>

<req id="req0">1</req>

<ack id="ack0">1</ack>

</smap>

</dpe>

...

</dp>

<ln id="mul_ln">

<map>

<from iface="mul_cp" sym="2"/>

<to iface="mul_dp" sym="1"/>

</map>

...

</ln>

Figure B.4: XML format: Components of an AHIR module.

121

B. An End-to-end Example

<omega id="omega">

<server id="mul" req="1" ack="1"

args_width="64" retval_width="32">

<call id="start_call_mul_0" client="start" callsite="call_mul_0"

req="2" ack="2"/>

</server>

<server id="start" req="1" ack="1"

args_width="0" retval_width="32">

<call id="env_call_start" client="env" callsite="call_start"

req="1" ack="1"/>

</server>

</omega>

Figure B.5: XML format: Inter-module link layer (Omega)

<map id="mul" size="3">

<init>

<location addr="1" id="a" type="int" size="1">

<scalar type="int" size="1">0</scalar>

</location>

...

</init>

<fin>

</fin>

</map>

Figure B.6: XML format: Memory map

122

B.5. VHDL generator

library ahir;

use ahir.dpath.all;

entity mul_dp is

port(

ip : in std_logic_vector(1 downto 1);

op : out std_logic_vector(1 downto 1) := (others => ’0’);

args : in std_logic_vector(63 downto 0);

retval : out std_logic_vector(31 downto 0);

reset : in std_logic;

clk : in std_logic);

end mul_dp;

architecture default_arch of mul_dp is

signal formal_0_d_wire : std_logic_vector(31 downto 0);

signal oper_tmp2_int_d_wire : std_logic_vector(31 downto 0);

...

begin

...

int_mul_0 : binary_operator -- MUL

port map(

clk => clk

, ip0 => int_mul_0_ip0 -- in

, ip1 => int_mul_0_ip1 -- in

, op => int_mul_0_op -- out

, req0 => int_mul_0_req0

, ack0 => int_mul_0_ack0

, reset => reset);

...

end default_arch;

Figure B.7: VHDL format: A data-path entity.

123

B. An End-to-end Example

library ahir;

use ahir.cpath.all;

entity mul_cp is

port (

ip : in std_logic_vector(2 downto 1);

op : out std_logic_vector(2 downto 1) := (others => ’0’);

reset : in std_logic;

clk : in std_logic);

end mul_cp;

architecture default_arch of mul_cp is

signal entry_d_entry_tip : std_logic_vector(0 downto 0);

signal entry_d_entry_ge : std_logic;

signal entry_d_entry_top : std_logic;

...

begin

...

entry_d_entry : transition

generic map(1)

port map(entry_d_entry_tip, entry_d_entry_ge, entry_d_entry_top);

fin : transition

generic map(1)

port map(fin_tip, fin_ge, fin_top);

...

entry_d_entry_tip(0) <= init_top;

oper_tmp2_int_d_req_tip(0) <= entry_d_entry_top;

fin_tip(0) <= oper_tmp2_int_d_ack_top;

...

end default_arch;

Figure B.8: VHDL format: A control-path entity.

124

B.5. VHDL generator

entity system is

port (

env_reqs : in std_logic_vector(1 downto 1);

env_acks : out std_logic_vector(1 downto 1);

...;

end system;

architecture default_arch of system is

...

begin

...

memory_inst : memory_subsystem

generic map (

num_loads => 3

, num_stores => 1

, data_width => memory_data_width

, addr_width => memory_address_width)

port map (

... load ports

... store ports);

mul_dp_inst : mul_dp

port map (...);

mul_cp_inst : mul_cp

port map (...);

omega_mul : omega_amux -- arbiter in the inter-module link layer

generic map (

args_width => 64,

retval_width => 32,

num_clients => 1)

port map (...);

...

end default_arch;

Figure B.9: VHDL format: The system entity.

125

Bibliography

[1] S. D. Sahasrabuddhe, H. Raja, K. Arya, and M. P. Desai, “AHIR: A Hardware Intermediate
Representation for Hardware Generation from High-level Programs,” in 20th International
Conference on VLSI Design, pp. 245–250, January 2007.

[2] B. Zahiri, “Structured ASICs: Opportunities and Challenges,” in 21st International Con-
ference on Computer Design, pp. 404–409, Oct 2003.

[3] G. J. Smit, P. J. Havinga, L. T. Smit, P. M. Heysters, and M. A. Rosien, “Dynamic Recon-
figuration in Mobile Systems,” in Lecture Notes in Computer Science, vol. 2438, p. 171,
Springer Berlin / Heidelberg, Jan 2002.

[4] P. S. Zuchowski, C. B. Reynolds, R. J. Grupp, S. G. Davis, B. Cremen, and B. Troxel,
“A Hybrid ASIC and FPGA Architecture,” in IEEE/ACM International Conference on
Computer Aided Design, pp. 187–194, Nov 2002.

[5] Z. A. Ye, A. Moshovos, S. Hauck, and P. Banerjee, “CHIMAERA: A High-Performance
Architecture With a Tightly-Coupled Reconfigurable Functional Unit,” in ISCA ’00: Pro-
ceedings of the 27th annual international symposium on Computer architecture, (New
York, NY, USA), pp. 225–235, ACM Press, 2000.

[6] D. D. Gajski, F. Vahid, and S. Narayan, “A System-Design Methodology: Executable-
Specification Refinement,” in European Design and Test Conference (ED&TC) 94,
pp. 458–463, February 1994.

[7] Arvind, R. Nikhil, D. Rosenband, and N. Dave, “High-level synthesis: An Essential In-
gredient for Designing Complex ASICs,” in International Conference on Computer Aided
Design (ICCAD 2004), November 2004.

[8] “Cameron Project and Single Assignment C (SA-C).”
http://www.cs.colostate.edu/cameron/.

[9] “Celoxica: Software-Compiled Systems Design.” http://www.celoxica.com/.

[10] “The Phoenix Project.” http://www.cs.cmu.edu/ phoenix/compiler.html.

[11] M. Budiu and S. C. Goldstein, “Pegasus: An Efficient Intermediate Representation,” tech.
rep., School of Computer Science, Carnegie Mellon University, April 2002.

127

BIBLIOGRAPHY

[12] G. Venkataramani, M. Budiu, T. Chelcea, and S. Goldstein, “C to Asynchronous Dataflow
Circuits: An End-to-End Toolflow,” in International Workshop on Logic & Synthesis,
(Temecula, CA), pp. 501–508, June 2004.

[13] “SPARK: High-Level Synthesis using Parallelizing Compiler Techniques.”
http://mesl.ucsd.edu/spark/.

[14] T. Murata, “Petri Nets: Properties, Analysis and Applications,” in Proceedings of the
IEEE, vol. 77, 1989.

[15] S. S. Muchnick, Advanced Compiler Design and Implementation. Morgan Kaufmann,
1997.

[16] “The LLVM Compiler Infrastructure.” http://llvm.org/.

[17] M. Rim and R. Jain, “Representing Conditional Branches for High-Level Synthesis Appli-
cations,” in Proceedings of the 29th ACM/IEEE Design Automation Conference, pp. 106–
111, 1992.

[18] G. G. Jong, “Data Flow Graphs: System Specification With the Most Unrestricted Seman-
tics,” in Proceedings of the European Conference on Design Automation, pp. 401–405,
IEEE, 1991.

[19] J. T. van Eijndhoven and L. Stok, “A Data Flow Graph Exchange Standard,” in Proceed-
ings of the 3rd European Conference on Design Automation, pp. 193–199, IEEE, 1992.

[20] D. D. Gajzki and A. Orailoglu, “Flow Graph Representation,” in Proceedings of the 23rd
Design Automation Conference, pp. 503–509, IEEE, 1986.

[21] S. Amellal and B. Kaminska, “Functional Synthesis of Digital Systems with TASS,” in
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 13,
pp. 537–552, IEEE, May 1994.

[22] A. Singla, “Memory Access Pattern Analysis,” Master’s thesis, Department of Electrical
Engineering, IIT Bombay, June 2008.

[23] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean, A. Kyker, and P. Roussel, “The
microarchitecture of the pentium 4 processor,” in Intel Technology Journal (L. Chao, ed.),
vol. 5, Intel Corporation, February 2001.

[24] M. Xu and F. J. Kurdahi, “Accurate Prediction of Quality Metrics for Logic Level Designs
Targeted Toward Lookup-Table-Based FPGA’s,” in IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 7, pp. 411–418, December 1999.

128

BIBLIOGRAPHY

[25] J. J. Dongarra, P. Luszczek, and A. Petitet, “The LINPACK Bench-
mark: past, present and future,” December 2001. Available online:
http://www.netlib.org/utk/people/JackDongarra/PAPERS/hpl.pdf.

[26] D. Ivereigh, “RedBlack Balanced Tree Searching and Sorting Library.”
http://libredblack.sourceforge.net/.

[27] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical recipes in C
(2nd ed.): the art of scientific computing. Cambridge University Press, 1992.

[28] P. Somawanshi, “A Hardware Implementation of Cryptographic Ciphers,” Master’s thesis,
Dept. of Electrical Engineering, IIT Bombay, 2008.

[29] G. Kostopoulos, N. Sklavos, M. D. Galanis, and O. Koufopavlou, “VLSI Implementation
of GSM Security: A5/1 and W7 Ciphers,” in International IEEE Workshop on Wireless
Circuits and Systems, May 2004.

[30] T. Good and M. Benaissa, “AES on FPGA from the Fastest to the Smallest,” in Crypto-
graphic Hardware and Embedded Systems - CHES 2005, vol. 3659/2005 of Lecture Notes
in Computer Science, pp. 427–440, Springer Berlin / Heidelberg, September 2005.

[31] K. P. Ghosh and S. Subramanian, “Power / Delay Estimation of Auto Generated Circuits,”
tech. rep., Department of Electrical Engineering, IIT Bombay, April 2009.

[32] G. Hazari, Bottleneck Analysis and Performance Modeling of VLSI Memory Sub-systems.
PhD thesis, Department of Electrical Engineering, IIT Bombay. Submitted in 2009.

129

Acknowledgments

My family — father Dilip, mother Pushpalata, brothers Mandar and Mahesh, and my wife

Meenal — for allowing me the luxury of being insulated from reality while I followed

my path, and for being there with me at every step.

My guides — Prof. Kavi Arya and Prof. Madhav P. Desai — for the inspiration and guidance I

received from them during my work, and for pointing me in the right direction every time

I strayed from the one true path. It is in their presence that I have begun to appreciate the

meaning of clarity in thought and action.

The office staff at the erstwhile KReSIT, at the Department of CSE and at the VLSI Lab

in the Department of EE, who have been instrumental in smoothening my interaction

with the administrative processes at IIT Bombay. They have always strived to cushion

students from the mundane workings of academic life at the institute, truly personifying

the popular marketing slogan, “Hum hain na!”.

Last but not at all the least, are all the friends that have made my stay at IIT Bombay. The

list is too long to be exhaustively written down, but I mention a few, roughly in the

order of appearance — Shantanu, Raghu, Srinath, Vikram, Abhinay, Deepanshu, Ajay,

Abhishek, Janaki, Paddy, Jaju, Yogi, Chetan, Arun, Shweta, Nitin, Vipul, Jatin, Tejaswi

and Ramanand. Thanks for all the fish, guys! And the beer, and the Rock, the movies,

the SIGFood outings, the late-night stints at SP, the early morning excursions to Maddu’s,

the treks, the Foundation Lab assignments, the amazing adventures as department sysads,

the chai, the road trips, and everything else in between, too!

Date: Sameer D. Sahasrabuddhe

	Abstract
	List of Tables
	List of Figures
	Introduction
	Our work
	Programming language independence
	Correctness
	Easily verifiable implementations
	Scalability

	Related work
	Improvements over RTL
	Modified high-level languages
	High-level programs as hardware specifications

	Organisation of the thesis

	AHIR
	A module in AHIR
	Data-path
	External access
	Behaviour of a data-path node

	Control-path
	The Intra-module Link Layer
	Symbol Handshakes
	Delay Constraints

	The Inter-module Link Layer
	Execution model
	Petri-nets in the control-path
	Type-1 petri-nets and Token Preserving Regions (TPRs)
	Type-2 Petri-nets and Standard TPRs
	Parallel-merge region
	Hierarchical representation of a standard TPR
	Algorithm to identify a Type-2 petri-net

	Summary

	The Compilation Process
	Static Single Assignment (SSA)
	The LLVM internal representation

	The CDFG representation
	Control edges
	Data edges
	Nodes
	The multiplexer node as an example
	start and stop nodes

	Translating the LLVM IR to a CDFG
	CDFG Nodes
	Data edges
	Control edges
	start and stop nodes

	Generating AHIR from a CDFG
	An AHIR fragment
	The multiplexer node
	start and stop nodes
	CDFG edges
	Labelling scheme
	Connecting fragments
	Creating a Type-2 petri-net
	Piece-wise translation from CDFG to AHIR

	Equivalence
	Summary

	Contention-free Reuse of Hardware
	Compatible operations
	Compatibility in a Type-2 petri-net

	Labels to indicate compatibility
	Labelling scheme
	Labelling successors of a fork
	Labelling a join

	Concurrency encoded in labels
	Canonical form of a fork region
	Labelling in a canonical fork region
	Labelling in a Type-2 petri-net

	Testing labels for compatibility
	A compact graph-based representation of labels
	The label representation graph (LRG)

	Construction of the LRG
	Labelling the successors of a fork
	Labelling a join
	Uniqueness of nodes

	Compatibility using the LRG
	Testing for compatibility
	Identifying sets of compatible operations

	Summary

	Implementation and Results
	Support for the C language
	Simulation and Synthesis
	Synthesisable VHDL implementation
	Evaluation of generated circuits

	FPGA implementation
	Performance
	Static sharing of hardware
	A note on the implementation
	Results

	ASIC implementation
	Inference

	Conclusion and Future Work
	Looking forward
	A universal design platform
	Hardware optimisations
	Memory subsystems

	Implementation of a High-level Synthesis Flow using AHIR
	Translating C to AHIR
	C to LLVM IR
	LLVM IR to AHIR
	Function calls
	AHIR Linker

	Synthesising AHIR
	Synchronous VHDL
	Operator reuse
	Scheduling and Allocation

	An End-to-end Example
	Expected input
	Source compiler
	AHIR-XML generator
	AHIR linker
	VHDL generator

	References

