
Inner loop optimizations in mapping single-threaded
programs to hardware

Madhav P. Desai
Department of Electrical Engineering

IIT Bombay, Mumbai, India
madhav@ee.iitb.ac.in

Abstract—In the context of mapping high-level algorithms
to hardware, we consider the basic problem of generating an
efficient hardware implementation of a single threaded program,
in particular, that of an inner loop. We describe a control-flow
mechanism which provides dynamic loop-pipelining capability in
hardware, so that multiple iterations of an arbitrary inner loop
can be made simultaneously active in the generated hardware,
We study the impact of this loop-pipelining scheme in conjunction
with source-level loop-unrolling. In particular, we apply this
technique to some common loop kernels: regular kernels such
as the fast-fourier transform and matrix multiplication, as well
as an example of an inner loop whose body has branching.
The resulting resulting hardware descriptions are synthesized
to an FPGA target, and then characterized for performance
and resource utilization. We observe that the use of dynamic
loop-pipelining mechanism alone typically results in a significant
improvements in the performance of the hardware. If the loop is
statically unrolled and if loop-pipelining is applied to the unrolled
program, then the performance improvement is still substantial.
When dynamic loop pipelining is used in conjunction with static
loop unrolling, the improvement in performance ranges from
6X to 20X (in terms of number of clock cycles needed for the
computation) across the loop kernels that we have studied. These
optimizations do have a hardware overhead, but, in spite of this,
we observe that the joint use of these loop optimizations not only
improves performance, but also the performance/cost ratio of the
resulting hardware.

I. I NTRODUCTION

We consider the problem of improving the performance
of hardware generated from single threaded programs; in
particular, the important problem of mapping loops to hard-
ware. It is well known that most compute intensive programs
spend a large fraction of their time in inner loops. Thus, the
optimal implementation of such loops is of primary impor-
tance, whether the target is a processor or hardware. Such
an improvement is essential if synthesized hardware is to be
performance competitive with high performance processorsor
with hand-crafted hardware.

In the context of compilation to a pipelined processor,
several loop optimizations have been considered in literature,
such as loop-unrolling, loop-peeling, software-loop-pipelining
etc. [6], [7], with the intent of these optimizations being the
extraction of as much parallelism as possible from the single-
threaded source program.

Similar loop-optimization techniques have been explored
and reported in the literature related to reconfigurable hard-
ware (for example [8], [9], [10]). For instance, in the work

reported by [8], loop optimizations are done in a manner
analogous to the static techniques used in software compilers,
in which index expressions which depend on the induction
variable are analysed to identify dependencies and schedule
operations across iterations of the loop body. An explicitly
timed controller is synthesized for the pipeline. Another ap-
proach which works in a similar manner is described in [9].
These approaches rely on a static analysis of the loop, and the
cases to which the approach can be applied are restricted (but
are still sufficiently general for most linear algebra and digital
signal processing kernels).

In our approach, the hardware model is abstracted as a
virtual circuit which consists of a data-path (a graph of op-
erations interconnected by wires) and a control-path whichis
modeled as a Petri-net. The operations in the data-path are not
tightly scheduled, with dependencies being taken care of bythe
control Petri-net (for example: operationX can start only after
operationsY,Z have finished etc.). This representation allows
the implementation of loop pipelining by a simple modification
to the control Petri-netwithout altering the data-path. It is
possible to pipeline any loop, even those that do not have
explicit induction variables (such as while loops). We will
describe this loop-pipelining mechanism in a later sectionin
this paper.

The experimental results in this paper are based on the
dynamic loop-pipelining optimization applied by itself and
in conjunction with static loop-unrolling. By loop-unrolling,
we mean astatic source-level or compile-time optimization
technique in which an inner loop is unrolled by instantiating
multiple copies of the loop-body while simultaneously reduc-
ing the number of loop-iterations. For example:

for(i=0; i < 8; i++) {
x += a[i]*b[i];

}

is transformed to

for(i=0; i < 4; i+=2) {
int i1 = i+1; int i2 = i+2; int i3 = i+3;
x += a[i]*b[i];
x += a[i1]*b[i1];
x += a[i2]*b[i2];
x += a[i3]*b[i3];

}



This unrolling increases the size of the basic block (that is,
the maximal sequence of statements without any branches),
and provides the possibility of extracting more parallelism in
the loop. Note that this unrolling can be done manually by the
programmer, or automatically by an optimizing compiler.

In the remainder of this paper, we will first briefly describe
the model of the hardware that is produced by our HLS com-
piler and illustrate how this model can incorporate dynamic
run-time loop pipelining. The chief issues here are the hard-
ware overhead (area, energy, delay) incurred by the need to
provide this run-time support in the hardware generated by the
compiler, and the corresponding improvement in performance
that results from this optimization. In the results presented in
this paper, the unrolling has been done manually at the source
code level.

In order to address this issue, we will present a set of ob-
servations from experiments performed on representative inner
loops that occur in some important applications such as the
fast-fourier transform, the matrix product, vector dot-product,
and a digital filtering algorithm. These observations report
the hardware performance on four different loop-optimization
choices: with no loop optimization, with static unrolling alone,
with dynamic loop pipelining alone, and with static unrolling
combined with dynamic loop pipelining. Hardware resource
utilization and delays are computed by synthesizing and sim-
ulating the generated hardware for an FPGA target.

The observations indicate the following:

• The performance improvement with loop-pipelining ap-
plied alone is in the 2X-8X range. This improvement is
observed both in the case of an inner loop whose body
is a single basic block, as well as in the case when the
inner loop body has branches.

• The performance improvement with loop-unrolling alone
is in the 2X range, and with aggressive unrolling (as was
tried in the matrix multiplication case), the improvement
is as high as 10X.

• The combination of loop-pipelining and loop-unrolling
leads to a performance improvement which is at least
as high as the product of the improvements due to the
individual optimizations. For matrix multiplication, this
improvement is as large as 20X.

• The hardware overheads for implementing these opti-
mizations are considerable, but the cost-to-performance
ratio improves substantially in all cases.

The results indicate that loop-unrolling combined with dy-
namic loop-pipelining can close the performance gap noted
above.

II. A NOTE ON OUR COMPILER FLOW

The dynamic pipelining mechanism described in this paper
is implemented in a compiler flow which takes a C program
and produces an equivalent VHDL description. We give a brief
description of this compiler flow. The details are not relevant
to this paper, and the interested reader can find them in [4].

Our compiler starts with a C program and produces VHDL.
For the C front-end, we use the clang-2.8 compiler1. This
compiler is used to emit LLVM byte-code2, which is then
transformed to VHDL using the following transformations:

1) The LLVM byte-code is translated to an internal inter-
mediate format, which is itself a static-single assignment
centric control-flow language (namedAa) which allows
the description of parallelism using fork-join structures
as well as arbitrary branching [11].

2) The Aa description is translated to a virtual circuit
(the model is described in the next section). During
this translation, the following major optimizations are
performed: declared storage objects are partitioned into
disjoint memory spaces using pointer reference analysis,
and dependency analysis is used to generate appropriate
sequencing of operations in order to maximize the
parallelism.

3) The virtual circuit is then translated to VHDL. At
this point, decisions about operator sharing are taken.
Concurrency analysis is used to determine if a shared
hardware unit needs arbitration. Optimizations related
to clock-frequency maximization are also carried out
here. The generated VHDL uses a pre-designed library
of useful operators ranging from multiplexors, arbiters
to pipelined floating point arithmetic units.

The compiler flow has been characterized over a wide
variety of applications [4], [5].

III. M ODEL OF THE VIRTUAL CIRCUIT GENERATED BY

OUR COMPILER

The virtual circuit generated by our compiler consists of
three cooperating components: the control-path, the data-path
and the storage system [4].

To illustrate the model, we consider a simple example.

float a[1024], b[1024];
float dotp = 0.0;
for(i=0; i < 1024; i++)
{

dotp += a[i]*b[i];
}

To compile this code, we use the clang-2.8 C compiler, which
is used to emit LLVM byte-code. The LLVM byte-code is
transformed through a series of steps by our compiler tools to
produce a virtual circuit, which is depicted in Figure 1. The
virtual circuit in Figure 1 has three components, described
below.

A. Data-path

The data-path is a directed hyper-graph with nodes being
operations and arcs being nets (shown as ovals). Each net
has at most one operation which drives it. Further, most
operations have a split protocol handshake with the control-
path: two pairs of request/acknowledge associations (*sr/*sa

1www.clang.org
2www.llvm.org



entry

exit

LB

LAINCR

FMUL

FADD

1023

CMP

EQ

0 0.0

I ndotP

dotP

nI

a*b

a

b

pr0pr1

lasr

lacr

lbsr

lbcr

iasr

iacr

msr

mcr

asr

p1a p0a

lasa

laca

lbsa

lbca

iasa

iaca

msa

mca

asa

aca

btaken

bnottaken

p1a p0a

iasa

iaca

lasa

laca

pr0pr1 pr1

iasr

iacr

lasr

lacr

lbsr

lbcr
lbsa

lbca

msr
msa mcr
mca

asr
asa

aca

acr
acr

csr
csa

csr

ccr
csa

cca

cca

ccr

Control
Petri−net

Data−path

brr

brr

bnottaken

btaken

memory

memory
to b[]

to a[]

Fig. 1. Control-data-storage virtual circuit model.

for sampling the inputs and *cr/*ca for updating the outputs).
The operation samples its inputs on receiving the sr request
symbol and acknowledges the completion of this action by
emitting the sa acknowledge symbol. After receiving the cr
symbol, the operation will update its output net using the
newly computed value. The sequencing is required to be

sr -> sa -> cr -> ca

Note that an operation can be re-triggered while an earlier
edition of the operation is in progress (this is important ifthe
operation is implemented in a pipelined operator).

Some data-path operations (such as the multiplexor shown
on the top and the decision operation shown at the bottom
left in Figure 1) follow a simpler protocol. The multiplexor
has a pair of requests and a single acknowledge, with the
condition that at most one of the requests is received at any
time instant. The input corresponding to the request is then
sampled and stored in the output net of the multiplexor. The
decision operation has a single request and two acknowledes.
Upon receipt of the request symbol, the decision operation
checks its input net and emits one of the two acknowledges
depending on whether the input is zero/non-zero.

In Figure 1, the following data-path operations are instan-
tiated:

mI, mdotP multiplexors for I, dotP.
INCR increment for I++
LA load for a[I]
LB load for b[I]
FMUL multiply for p=a[I]*b[I]
FADD add for dotP += a*b
CMP EQ compare for COND=(I==1023)

D decision COND?

Remark Note that the data-path only shows the operations and
their interconnection. When the data-path is implemented as
hardware, multiple operations may be mapped to a single op-
erator depending on cost/performance tradeoffs. When this is
done, multiplexing logic is introduced in the hardware. These
decisions and manipulations are performed in the compiler
stage which is responsible for transforming the virtual circuit
to VHDL.

B. Storage subsystem

The load and store operations in the data-path are associated
with memory subsystems. In general, there can be multiple
disjoint memory subsystems inferred by our compiler. In this
particular case, the arrays a[] and b[] are mapped to disjoint
memories, due to which the two loads are allowed to proceed
in parallel (the relaxed consistency model is enforced). In
order to maintain the relaxed consistency model, the memory
subsystems are designed to use a time-stamping scheme which
guarantees first-come-first-served access to the same memory
location.

C. Control-path

The control-path in the virtual circuit encodes all the
sequencing that is necessary for correct operation of the
assembly. The control-path (shown on the left in Figure 1)
is modeled as a Petri-net with a unique entry point and a
unique exit point. The Petri-net is constructed using a set
of production rules which guarantee liveness and safeness
[4]. Transitions in the Petri-net are associated with output
symbols to the data-path (these can be described by the regular



expressions *sr and *cr) and input symbols from the data-
path (these are of the form *sa and *ca). The *sr symbols
instruct an element in the data-path to sample its inputs and
the *cr symbols instruct an element in the data-path to update
its outputs (all outputs of data-path elements are registered).
The *sa and *ca symbols are acknowledgements from the data-
path which indicate that the corresponding requests have been
served.

The following classes of dependencies are encoded in the
control Petri-net:

• Read-after-write (RAW): If the result of operator A is
used as an input to operator B, the sr symbol to B can
be emitted only after the ca symbol from A has been
received.

• Write-after-read (WAR): If B writes to a net whose value
needs to have been used by A earlier, for example as in

a = (b+c) -- operation A reads c
c = (p*q) -- operation B writes to c

where there is a WAR dependency through c, then the cr
request to B can be issued only after the sa acknowledge
from A has been received.

• Load-Store ordering: If P,Q are load/store operations to
the same memory subsystem, and if at least one of P,Q
is a store, and if P is supposed to happen before Q, then
the sr request to Q must be emitted only after the sa
acknowledge from Q has been received. The memory
subsystem itself guarantees that requests finish in the
same order that they were initiated. This takes care of
WAR, RAW and WAW memory dependencies.

The control-path in 1 shows the sequencing generated
by these rules. Note that the data-path is not party to any
sequencing decisions (other than responding to the request
symbols).

IV. A CONTROL-FLOW MECHANISM FOR DYNAMIC

LOOP-PIPELINING

For the subsequent discussion, we assume that the inner loop
which is being optimized consists of a single basic block, that
is, there are no branching instructions in the loop body (no
jumps, if constructs, switch constructs etc.). If such constructs
are present, these are first eliminated using the mechanism of
guarded (that is, predicated) execution.

Suppose that we want to modify the control-path in order
to permit the second (and maybe third etc.) iteration of a loop
to begin while the first iteration is still in progress. Consider
the example of the dot product. The original loop was

float a[1024], b[1024];
float dotp = 0.0;
for(i=0; i < 1024; i++)
{

dotp += a[i]*b[i];
}

The fully unrolled version of this loop would be

float a[1024], b[1024];

float dotp = 0.0;
dotp += a[0]*b[0];
dotp += a[1]*b[1];
dotp += a[2]*b[2];
...
dotp += a[1023]*b[1023];

Let A denote the∗ operation and letB denote the+ operation,
La, Lb denote the loads froma andb respectively. In principle,
all the loads can occur simultaneously, and all the multiplies
can happen simultaneously once the loads complete. The adds
would need to be ordered because of the multiply-accumulate
nature of the code as it is written. Any ordering of these
operations which satisfies these dependencies will be termed
a loop-consistent ordering.

In our dynamic loop pipelining scheme, we use the follow-
ing ordering scheme. If A is an operation in the loop body,
denote thekth execution of A byAk. Since each operation has
events sr, sa, cr, ca, we denote these byAk.sr, Ak.sa, Ak.cr,
Ak.ca respectively. We impose the following dependency rules
on operations across loop iterations.

• Ak.sa → Ak+1.sr for all operations A: that is, the next
execution of A cannot start until the current execution
has finished sampling the inputs.

• Ak.ca → Ak+1.cr for all operations A: that is, the
completion of the next execution of A can be initiated
only after the current execution of A has completed.

• If A → B is a RAW dependency, thenBk.sa → Ak+1.cr.
That is, until B has sampled the result of the current A,
the next completion of A cannot start.

• If A → B is a WAR dependency, thenBk.ca → Ak+1.sr.
That is, the next A cannot start until the current B has
completed.

• If P, Q are successive load/stores, with at least one of
them being a store, thenQk.sa → Pk+1.sr. That is, the
next P cannot start until the current Q has acknowledged
that it has started.

The mechanism for incorporating RAW and WAR dependen-
cies is illustrated in Figure 2 for RAW and WAR dependencies
within the loop body. The reverse dotted arc is a marked arc
(it initially carries a single token).

It is easy to confirm that these additional dependencies
ensure that the loop execution subject to these dependencies is
a loop-consistent ordering. The modified control path is shown
in Figure 3. The loop-terminator element has three inputs: a
loop-taken transition, a loop-not-taken transition and a loop-
body-exit transition. The loop-taken/not-taken pair indicates
whether a new iteration is to be started or whether the loop
has terminated. The loop-body-exit transition indicates that the
body of the loop has finished executing an iteration. The loop-
terminator initiates a new iteration as long as the number of
active iterations is within a specified limitM (usually, we
keep this limit toM = 8). Thus, all the places in the modified
control path in Figure 3 now must have a capacity ofM and
the cost of implementing each place in the control path goes
up by a factor oflog M . This is the major additional cost



A.sr

A.sa

A.cr

A.ca

B.sr

B.sa

B.ca

B.cr

A.sr

A.sa

A.cr
A.ca

B.sr

B.sa

B.cr

B.ca

RAW
B after A

WAR
B after A

Fig. 2. Control-path mechanism for handling RAW, WAR dependencies for
loop-pipelining.

incurred by the pipelining mechanism.

entry

pr0

lasr

lacr

lbsr

lbcr

iasr

iacr

msr

mcr

asr

p1a p0a

lasa

laca

lbsa

lbca

iasa

iaca

msa

mca

asa

aca

btaken

bnottaken

acr

csr
csa

cca

ccr

Control
Petri−net

brr

Loop terminator

loop−taken loop
not
taken

loop−body
exit

loop−exit

pr1

pr1

Fig. 3. Modified control-path with loop-pipeline dependencies (dotted lines).

V. EXPERIMENTAL RESULTS

We considered four examples:

• Three examples where the loop body was a single basic
block: the dot product, the fast-fourier-transform, and
matrix multiplications, each with critical inner loops.
Four configurations were tested in each case: the ba-
sic code, the unrolled code, the basic code with loop-
pipelining and the unrolled code with loop-pipelining. In
each case, the generated VHDL code was synthesized to
a Xilinx Virtex-6 FPGA and synthesis results were used
to estimate the resource usage, the clock frequency and
the number of cycles required by the inner loop.

• One example where the loop body exhibits branching: a
stream processor kernel which operates on a stream of
numbers and performs operations on the stream depend-
ing on an op-code stream. This example illustrates that
the dynamic loop-pipelining mechanism is effective in
complex loop bodies as well.

VI. T HE DOT PRODUCT

The basic code (a,b are arrays, dotP is the accumulated dot-
product):

for(I=0; I < 64; I++)
{
dotP += a[I]*b[I];

}

The unrolled version of the code used:

for(I=0; I < 64; I += 4)
{
I1 = I+1; I2 = I+2; I3 =I+3;
dotP += ((a[I]*b[I]) + (a[I1]*b[I1])

+ (a[I2]*b[I2]) + (a[I3]*b[I3]));
}

The results are shown in Table I. The number of clock-
cycles needed to complete the inner loop, the number of look-
up tables needed, the number of flip-flops needed and the post-
synthesis clock frequency estimate are reported in the table.
The last two rows correspond to the normalized performance
(time needed by the plain case relative to the optimized case,
higher is better), and the normalized performance/cost ratio
(time/(LUTs+FF) ratio normalized with respect to the plain
case, higher is better).

TABLE I
DOT-PRODUCT RESULTS WITH AND WITHOUT LOOP-OPTIMIZATIONS

plain pipelined unrolled pipelined
+ unrolled

Cycles 4071 1874 1894 582
LUTs 4288 5195 4809 7344
FFs 3799 4345 4378 5911

Freq.(MHz) 199.7 199.7 199.7 199.7
Norm. Perf. 1 2.17 2.15 7

Norm. Perf/Cost 1 1.83 1.89 4.27

From Table I, we see

• If loop-pipelining is applied to the plain program, per-
formance improves by about 2X relative to the non-
pipelined, plain case.

• If loop-pipelining is applied to the unrolled program,
performance improves by more than 3X relative to the
non-pipelined, unrolled case.

• In terms of the performance/cost ratio, the pipelined-
unrolled version is more than 3X better than the plain
version. The normalized performance/cost ratio is 4X
better when both loop optimizations are used.



VII. T HE FAST-FOURIER-TRANSFORM (FFT)

A 64 point FFT program (radix two, in-place, twiddle
factors computed apriori) with the following loop-structure
was used:

for(STAGE=0; STAGE < 6; STAGE++)
{
for(BFLY=0; BFLY < 32; BFLY++)
{

Butterfly(STAGE,BFLY);
}

}

where the functionButterfly is inlined and implements the
radix-two butterfly with index BFLY in stage STAGE using
the precomputed twiddle factors. In the unrolled version, the
inner-loop was rewritten as

for(BFLY=0; BFLY < 32; BFLY += 4)
{

Butterfly(STAGE,BFLY);
Butterfly(STAGE,BFLY+1);
Butterfly(STAGE,BFLY+2);
Butterfly(STAGE,BFLY+3);

}

The results are shown in Table II (the cycle count is for a
single stage of the FFT). From Table II, we see

TABLE II
FFT-RESULTS WITH AND WITHOUT LOOP-OPTIMIZATIONS

plain pipelined unrolled pipelined
+ unrolled

Cycles 4151 2885 3110 1064
LUTs 12155 23139 16032 37831
FFs 11955 18632 15299 28698

Freq.(MHz) 186.9 164.1 186.9 164.7
Norm. Perf. 1 1.26 1.33 3.42

Norm. Perf/Cost 1 0.73 1.02 1.24

• If loop-pipelining is applied to the plain program, per-
formance improves by about 1.26X relative to the non-
pipelined, plain case.

• If loop-pipelining is applied to the unrolled program,
performance improves by more than 2.5X relative to the
non-pipelined, unrolled case.

• In terms of the performance/cost ratio, the pipelined-
unrolled version is only 1.24X better than the plain
version.

The reason for the poorer results in this case is the use of the
in-place algorithm. The bottleneck in this case becomes the
access to the memory subsystem in which the array is stored.

VIII. M ATRIX MULTIPLICATION

The plain triple loop matrix multiplication algorithm was
used as a starting point.

float a[16]16], b[16][16], c[16][16];

for(i = 0; i < 16; i++) {
for(j=0; j < 16; j++) {
float v = 0.0;
for(k = 0; k < 16; k++) {

v += a[i][k]*b[k][j];
}
c[i][j] = v;

}
}

The unrolled version was aggressively generated so that the
inner loop simultaneously computes 16 entries of the product
at a time.

float a[16]16], b[16][16], c[16][16];
for(i = 0; i < 16; i += 4) {
for(j=0; j < 16; j += 4) {
float v00 = 0.0, v01 = 0.0,

v02 = 0.0, ... v33 = 0.0;
for(k = 0; k < 16; k += 4) {

v00 += (a[i][k]*b[k][j]
+ a[i][k+1]*b[k+1][j]
+ a[i][k+2]*b[k+2][j]
+ a[i][k+3]*b[k+3][j]);

...
v33 += (a[i+3][k]*b[k][j+3]

+ a[i+3][k+1]*b[k+1][j+3]
+ a[i+3][k+2]*b[k+2][j+3]
+ a[i+3][k+3]*b[k+3][j+3]);

}
c[i][j] = v00;
..
c[i+3][j+3] = v33;

}
}

The observations are shown in Table III. From Table II, we

TABLE III
MATRIX -MULTIPLICATION -RESULTS WITH AND WITHOUT

LOOP-OPTIMIZATIONS

plain pipelined unrolled pipelined
+ unrolled

Cycles 161K 77K 13K 7810
LUTs 6323 9408 14891 31744
FFs 6974 8818 12041 21060

Freq.(MHz) 199.7 199.7 186.1 164.1
Norm. Perf. 1 2.09 11.5 16.9

Norm. Perf/Cost 1 1.52 5.67 4.25

see

• If loop-pipelining is applied to the plain program, per-
formance improves by about 2X relative to the non-
pipelined, plain case.

• If loop-pipelining is applied to the unrolled program, per-
formance improves by 1.5X relative to the non-pipelined,
unrolled case.



• In terms of the performance/cost ratio, the pipelined-
unrolled version is only 4.25X better than the plain
version.

In this instance, the aggressive loop-unrolling shows excel-
lent performance. Loop-pipelining when combined with loop-
unrolling, gives a 20X improvement in the cycle count. The
normalized performance and performance/cost improvements
are also substantial.

IX. A STREAM PROCESSOR

The following loop was used to test a situation in which the
loop body has branching.

while(1)
{
float x = read_float32("x_pipe");
float y = read_float32("y_pipe");
uint8_t op_code = read_uint8("op_pipe");

float result = 0;
if(op_code == 0)

result = x*y;
else if(op_code == 1)

result = x+y;
else if(op_code == 2)

result = (x*x) - (y*y);
else if(op_code == 3)

result = (x + y) * (x + y);
else

result = 0;
write_float32("z_pipe",result);

}

In this loop, x, y and op code are read from three input
streams. Depending on the value ofop code, a result is
calculated and written out to an output stream.

In order to pipeline this loop, the conditional statements are
first eliminated using guards. This is done by calculating the
predicates

(op_code == 0)
(op_code == 1)
(op_code == 2)
(op_code == 3)

and using these predicates to guard the execution of the
statements which depend on these conditions. This is done
automatically in our compiler.

The observations are shown in Table IV. The time reported
is that needed to process 16 elements from the streams (that
is, to complete 16 iterations of the loop).

We observe a 4X improvement in performance and a 2X
improvement in the performance/cost ratio.

X. CONCLUSION

We have considered the problem of optimizing inner
loop implementations in an algorithm-to-hardware compilation

TABLE IV
STREAM PROCESSOR INNER LOOP OBSERVATIONS: PIPELINED VERSUS

NON-PIPELINED

plain pipelined

Cycles 2913 334
LUTs 4603 12501
FFs 4248 8808

Freq.(MHz) 184.9 103.9
Norm. Perf. 1 4.86

Norm. Perf/Cost 1 2.01

system. Two optimizations were considered: static source-
level loop unrolling and dynamic hardware supported loop-
pipelining. The loop-pipelining mechanism is implementedby
modifying the control-flow in the generated hardware (without
disturbing the data-path).

The data obtained from four inner loop kernels is encourag-
ing. The first three were examples in which the inner loop body
consisted of a single basic block. In these cases, both loop-
pipelining and loop-unrolling lead to substantial performance
gains. Further, using both optimizations together resultsin
multiplicative gains and in call cases, leads to hardware which
is substantially faster and more efficient (in terms of the
performance/cost ratio). The performance gain is lower if there
is a bottleneck in the algorithm itself, such as in the FFT case,
in which accesses to the in-place array reduce the performance
gains seen due to the loop optimizations. In the fourth inner
loop kernel, we considered a loop body which had branching.
In this case, considerable performance and performance/cost
gains were observed when loop pipelining was enabled.

Thus, the use of hardware based dynamic loop-pipelining
techniques offers a significant boost in performance in hard-
ware synthesized from single-threaded programs. The perfor-
mance boost provided by the dynamic loop-pipelining in hard-
ware seems to indicate that its use, especially in conjunction
with aggressive loop unrolling can offer a substantial reduction
in the gap between the quality of automatically generated
hardware and hand crafted hardware implementations of the
same algorithm. This needs to be investigated further.

REFERENCES

[1] G. Venkataramani, M. Budiu, T. Chelcea, and S. Goldstein,“C to Asyn-
chronous Dataflow Circuits: An End-to-End Toolflow,” inInternational
Workshop on Logic & Synthesis, Temecula, CA, June 2004, pp. 501–
508.

[2] S. Gupta, N. Dutt, R. Gupta, and A. Nicolau, “SPARK : A High-Level
Synthesis Framework For Applying Parallelizing Compiler Transforma-
tions,” in International Conference on VLSI Design, January 2003.

[3] S. D. Sahasrabuddhe, “A competitive pathway from high-level programs
to hardware.” Ph.D. dissertation, IIT Bombay, 2009.

[4] S. D. Sahasrabudhe, S. Subramanian, K. Ghosh, K. Arya, andM. P.
Desai, “A C-to-rtl flow as an energy efficient alternative to the use of
embedded processors in digital systems,” inDSD 2010, 2010, pp. 147–
154.

[5] T. Rinta-Aho, M. Karlstedt, and M.P. Desai, “The clicktonetfpga tool-
chain,” in USENIX ATC-2012. 2012, USENIX Association, Berkeley
CA.

[6] M. Wolfe, High Performance Compilers for Parallel Computing.
Addison-Wesley, 1995.

[7] S. S. Muchnick,Advanced Compiler Design and Implementation. Mor-
gan Kaufmann, 1997.



[8] M. Weinhardt and W. Luk, “Pipeline Vectorization,”IEEE Transactions
on the Computer-aided Design of Integrated Circuits and Systems,
vol. 20, no. 2, pp. 234–248, 2001.

[9] J. Cardoso, “Self Loop Pipelining and Reconfigurable Dataflow Arrays,”
in Computer Systems: Architecture, Modeling and Simulation, LNCS
3133. Springer Verlag, July 2004, pp. 234–243.

[10] R. Kastner, “Synthesis techniques and optimizations for reconfigurable
systems,” Ph.D. dissertation, University of California, Los Angeles,
2002.

[11] M. Desai, “The Aa Language Reference Manual,” Technical Report,
Department of Electrical Engineering, IIT Bombay, 2012.


