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This paper is concerned with a method for expanding (or reducing) a Petri net represen- 
tation to the desired level of detail using step-by-step refinement of transitions and places (or 
abstraction of subnets to transitions). In particular, we present conditions under which a 
subnet can be substituted for a single transition while preserving properties such as liveness 
and boundedness. The present method is general enough to include previously reported 
methods as special cases. The refinement technique can be used as a top-down approach for 
synthesizing Petri net models of concurrent systems, while the abstraction technique can be 
used as a “divide-and-conquer” approach to the analysis of Petri nets. 

1. INTRODUCTION 

Petri nets and related graph models have been proposed for a wide variety of 
applications [ 1,3, 121. These models are particularly suitable for representing 
concurrent hardware and software systems. They serve as intermediate tools between 
detailed circuit diagrams and block diagrams (or flowcharts), when the former are 
too complex to analyze or the latter too coarse to predict the behavior of systems. 
Yet, a difftculty in the use of Petri nets for large scale systems is that the net 
representation may still become too large to handle. 

To cope with the above large scale problem, this paper presents a method for 
refining (or abstracting) a Petri net representation to the desired level of detail using 
step-by-step transformations of transitions into subnets (or vice versa). In particular, 
we present conditions under which a subnet can be substituted for a single transition 
while preserving properties such as liveness (absence of deadlooks) and boundedness 
(absence of overflows). Our method is closely related to and generalizes the method 
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of Valette [ 141 in the following points: (1) Our method is applicable if a transition to 
be refined is not (k + I)-enabled for some integer k > 1, whereas the method of 
Valette is applicable only for k = 1; and (2) the condition (well-formedness) that a 
subnet must satisfy in [ 141 is a sufficient condition for our counterpart (l-well- 
behavedness). 

After defining the terminology used in this paper in Sec. 2, the main results on 
transformations of transitions are given in Sec. 3. Section 4 presents a method for 
refining places using the transition refinement techniques described in Sec. 3. 
Section 5 shows that (k + I)-enabledness and k-well-behavedness are decidable 
properties. Also, two additional properties used in the theory are shown to be 
decidable. Finally, in Sec. 6 our method is illustrated with two examples. The first 
example illustrates how marked graph transformations reported in 15, 111 can be 
interpreted by our transformation method for transitions, and the second one 
illustrates a divide-and-conquer approach to the liveness analysis of Petri nets. 

2. DEFINITIONS 

We denote by N and hT+, the set of non-negative integers and the set of positive 
integers, respectively. For any set S, S* is the set of all finite sequences of elements 
of S, including the empty sequence 1. S* - (2) is written as S+. JoI denotes the 
length of u E S*. #(u, s) is the number of occurrences of s E S in u E S*. 

A Petri net is a five-tuple N = (P, T, IN, OUT, M,) where P is a finite set of places, 
T is a finite set of transitions (Pn T = #), IN: T x P-+ AT and OUT: T x P + A’ are 
functions. Any function M: P + N is called a marking, and h4,, denotes an initial 
marking. A place p E P such that IN(t,p) # 0 (or OUT(t,p) # 0) is called an input 
place (or an output place) of t E T. A transition t E T such that OUT(t,p) # 0 (or 
IN(t,p) z 0) is called an input transition (or an output transition) of p E P. A tran- 
sition f E T is said to be enabled at a marking M, iff (if and only if) IN(t,p) < M,(p) 
for all p E P. If t is enabled at M, , the marking M, such that M,(p) = M,(p) - 
IN&p) + OUT(t,p) for all p E P is reachable from M, by a firing of t, and we write 
M,(t) M2. If there exist transitions t, , t2 ,..., t, such that M,(t,) MI+ 1 (i = 1, 2 ,.,., n) for 
markings M, , M, ,..., M,, , , we say that M,+ , is reachable from M, by firing 
sequence u = t, t, - -. t, (starting from M,), and we write M,(u) M,, 1. We define 
M(L)M for any marking A4. L(N) denotes the set of all firing sequences starting from 
the initial marking MO, and R(N) denotes the set of all markings reachable from M,, . 
A transition t E T is live iff for any u E L(N) there exists a sequence u’ E T* such 
that uu’t E L(N). N is live iff every c E T is live. A place p E P is k-bounded for 
k E A’+ iff M(p) Q k for all ME R(N). N is k-bounded iff every p E P is k-bounded. 
N is ssfe iff it is l-bounded. A transition t E T is k-enabled for k E MT+ in N iff there 
exists a marking ME R(N) such that k S IN&p) < M(p) for every p E P. 

A Petri net N = (P, T, IN, OUT, M,) is drawn as a graph in which a place is 
represented by a circle, and a transition by a box. Whenever IN(t,p) > 0, there is an 
arc with weight IN(t,p) from the circle for p to the box for t; and whenever 
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FIG. 1. (a) N, and (b) B(N t. t 9 I”. O”L’ k). 

OUT(t.p) > 0, there is an arc with weight OUT(t,p) from the box for t to the circle 
for p (the weight may not be indicated when it is 1). A marking M is represented by 
drawing M(p) dots called tokens or writing “M(p)” in the circle for p. 

For a Petri net N= (P, T, IN, OUT, M,,), two distinct transitions fin, tout E T and 
k E iy+ , the Petri net B(N, ti, , tout, k) = (f’u {IA,}, T, IN,, OUT,, M,,) (p,, 6-C P is a 
new place) is defined as follows (see Fig. 1): 

IN& P) = 1, 

= 0, 

= IW, P), 

OUT&, P> = 1, 

= 0, 

= OU’W, P), 

M,,(P) = k 
= MO(P), 

t=ti,,andp=p,, 

tZti,,andp=P,, 

p E P, 

f = tour andp =P,,, 

t + tout andp =P,,, 

P E P, 

P=Po, 

p E P. 

For k E A’+, a Petri net N= (P, T, IN, OUT, M,,) is said to be k-well-behaved (k- 
WB) with respect to two distinct transitions fin, t,,t E T iff the following three 
conditions hold: 

( WBl) tin is live in B(N, tin, tout, k). 

(WB2) For each u1 E L(B(N, ti”) tout, k)) such that #(ol y fin) > #(al, t,,J, 
there exists o2 E (T- {fin})+ such that U,U~ E L(B(N, ti”, tout, k)) and #(u, , fin) = 

#(al f-72 9 Lt). 

(wB3) #(UT fin) 2 #(U, tout) for any r.7 E L(B(N, fin, tout, k)). 

(WBl) states that 1,” never “gets blocked.” (WB2) and (WB3) say that ti, can “get 
ahead” of tout in firings, but tour can always “catch up,” We have: 
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PROPERTY 1. For n EN+, if Petri net N is (n + l)- WB with respect to ti, and 
t out, then N is n- WB. 

Proof: Suppose that N is (n + I)- WB for n E N+, and let B(N, tin, faut, n + 1) 
and B(N, tin 7 tout, n) be denoted by N,,, 1 and N,,, respectively. (WB2) and (WB3) for 
k = n + 1 imply (WB2) and (WB3) for k = n, respectively. Let o E L(N,) be an 
arbitrary tiring sequence. By (WB2) and (WB3) for k = n, there exists 
u1 E (T- (fin})* such that ocr, EL(N,J and #(a, tJ=#(uo,, t,,J, where T is the 
set of transitions of N. Clearly uo, E L(N,+ 1), and by ( WBl) for k = n + 1 we have 
uu,u,tin E L(N,+,) for some u2 E (T- (tin})*. Since the markings of N,,, and N,, 
reached by uu, are identical except that pO has n + 1 tokens in N,, 1 and n tokens in 
N,,, uu1u2 tin is also a firing sequence of N,,. So ( WBl) holds for k = n, and thus N is 
n-WB. I 

EXAMPLE 1. Transition 1, of Petri net N shown in Fig. 2(a) is l-, 2-, and 3- 
enabled, but not k-enabled for k > 4. Petri net N’ shown in Fig. 2(b) is I-, 2-, and 3- 
WB with respect to t,, and tout, but not k- WB for k > 4. B(N’, ci,, tout, 3) is 
illustrated in Fig. 2(c). 1 
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FIG. 2. Examples 1, 2, and 3: (a) Petri net N, (b) N’, (c) B(N’, I,,, f,,,, 3) and (d) 
N” = TR(N, N’, t,, tin, t,J. 
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FIG. 3. Definition of N”: (a) N, (b) N’ and N” = i’X(N, N’, f,, fi,, I,,~). 

fifing sequence of N. Similarly, f’ converts a firing sequence of N” to a firing 
sequence of NL. 

(a) f(4 = 2. 
(b) For u” E (T”)*, 

f(u”t) =f(cJ”), 

=fGJ”) to, 
= f (a”)t, 

(a’) f’(A) = Iz. 
(b’) For u” E (T”)*, 

f’(a”t) =S’(d’)t, 

=f’(ts”), 

t E T’ - {tin), 

t = tin, 

t E T- {t,,}. 

tE T', 

I E T- (to}. 



STEPWISE REFINEMENT OF PETRI NETS 51 

Lemmas 2 and 4, in the following, state that if we refine a transition of N by a 
well-behaved Petri net, any firing sequence in the original net N can be simulated, 
using the correspondence given by f, by some firing sequence of the resulting net N”, 
and conversely, any possible firing sequence in N” is a simulation of some firing 
sequence in N. 

LEMMA 2. For any u E L(N), there exists u” E L(N”) such that f(a”) = CJ. 

Proof By ( WBl) and (WB2) there exists an infinite number of elements of (T’)*, 
a;, 0; ,*a., Uii_,) c7ii )...) such that #(a;,_ 1, tin)= 1, #(U;i_l, tout)= 0, #(U?i, tin)= 0 
and #(U;i, &) = 1 for all i E NY+, and u{u; . -. uii_ ,uii . . - is a firing sequence of 
NA . So for any u E L(N), u” E (T”)* where u” is obtained from u by replacing the 
ith occurrence of I, by uii_ 1uii is a firing sequence of N”; i.e., u” E L(N”). Clearly 
f(a”) = u. I 

LEMMA 3. Given a firing sequence u” E L(N”), suppose that f(u”) E L(N) and 
f’(u”) E L(NA) (which always holds as proved in Lemma 4), and let M{(u”) MI’, 
M,(f(u”)) M, and M&,(f’(u”)) ML,. Then we have 

M~(P) =M~‘(P) + OUT”(‘,,,,p) * (#(a", tin) - #(U"y tout)} 

for all p E P, and 

M;,(P) =M~‘(P) (2) 

for all p E P’. 

Proof. As (2) is trivial, we will only prove (1). The proof is by induction on the 
length of 0”: 

(basis): (1) holds for u” = 1. 
(induction): Suppose that (1) holds for all u” with lu”[ < n. For a” = oft E 

L(N”) with I&‘( = n, let Mi(uf) M”, M”(t) My, M,(f(u;))M, and M(f(t)) M,. By 
the inductive hypothesis we have 

M(P) =M”(P) + OUT”(t,“,,p) * {#(Of, fin) - #(a:, tout)) (1') 

for all p E P. 
If t E T- {c,}, then M,“(p) = M”(p) - IN&p) + OUT(t,p) and M,(p) = M(p) - 

IN@, p) + OUT@ p) for all p E P, and thus (1) is derived from (1’). 
If t E T’ - (fin, rout}, then M;(p) =&f”(p) and M,(p) = M(p) for all p E P by 

definition, and again (1’) yields (1). 



58 SUZUKI AND MURATA 

Now suppose that t = tin. Since f(ti,) = t,, for all p E P we have 

M,(P) =M(P) - Wwp) + OU-W,,p), 

= M”(P) + OUT”(t,,, 9 P) * {#(al’, tin) - #(of 7 tout)} - IN(t,, p) + OUT(t, 7 p) 

(by (l’)), 

= M”(P) - IN”(t,,,p) + OUT”(t,“,,p) * {#(u”, tin) - #(o”, to,*)) 

(since IN(t,,p) = IN”(ti,,p) and OUT(t,,p) = OUT”(t,,,,p)), 

= Mi “(P) + OUT”(t,,r 3 P) * (#(c”, tin) - #(g”, tout)} 
(since OUT”(t,, , p) = 0), 

and thus (1) is derived. 
Finally suppose that t = tout. Sincef(&) = 1, for all p E P we have 

M,(P) = M(P) 

= M”(p) + OUT”(t,,,,p) * {#(or, tin) - #(a;, tout)}, 
(by (I’)) 

= M”(P) + OUT”(t,“,,p) + OUT”(t,,,,p) * {#((T”> tin) - #(G”, tout)}, 

= Ml’(p) + OUT”(t,,,,p) * {#(c”, tin) - #(a”, tout)} 
(since IN”(tout ,p) = 0), 

and (1) is derived. This completes the proof of (1). 1 

LEMMA 4. For any CJ” E L(N”), the following hold: 

f(u”> E L(N), (3) 

#(o”) fin) Z #(o”, tout), (4) 

f’(a”) E L(N;). (5) 

ProoJ The proof is by induction on the length of 0”: 

(basis): For 6” = 2, (3), (4), and (5) hold trivially. 

(induction): Suppose (3), (4), and (5) hold for any 0” E L(N”) with Jo” ( < n. 

(induction for (3)): Let 0” = aft E L(N”) be an arbitrary tiring sequence 
where IQ,“/ = n. 

If t E T’ - {tin},f(u”) =f(u;) EL(N) by the inductive hypothesis for (3). 
Suppose that t E (T- {t,,})U {tin). BY (I), (4), and the inductive hypothesis for 

(3), we have M;(p) < M,(p) for p E P where MUM:’ and MO(f(u~))M,. 
Therefore, since t is enabled at MI’ in N”, t (or t, if t = tin) is enabled also at M, in 
N; i.e., f(u”) =f(ur)t (or f(ur) t, if t = tin) E L(N). 
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(induction for (4)): Suppose that #(u”, ti,) < #(u”, tout) for some 
0” E I,(N”) with 10” I= n + 1. By the inductive hypothesis for (4), this is possible 
only when u” = ~j’t,,~, where #(a;, fin) = #(a:, t,J. By (2) and the inductive 
hypothesis for (5), My(p) =MAr(p) for all p E P’, where Ml(u:‘)M, and 
;;j([(;;)) ML*. So we have f’(@‘) tout E L(NL) and #(f’(uT) tout, fin) < 

’ 0; out, to”), a contradiction to (WB3). Therefore (4) is true for all u” E L(N”) 
of length n + 1. 

(induction for (5)): Let u” = uyt E L(N”), where lay ( = n and t E T”. 
If t & T’, f’(urt) =f’(u;‘) E L(N”) by the inductive hypothesis for (5). 
Suppose that t E T’. Since My(p) = M;,(p) for all p E P’ where Mi(u;) MI’ and 

M~,(f’(u~))M~, by (2) and the inductive hypothesis for (5), we have f’(urt) = 
f’(uy)t E L(NL) for t E T’ - {tin}. For t = tin, we have to show that Mi,(p,) > 1. If 
ML,@,) = 0, then #(u”, tin) = #(u”, tout) + (k + 1). Since the last (k + 1) firings of 
ti” in u” have no “corresponding” firings of t,,t in a”, we see, from the construction 
of N”, that in the firing sequence f(u”) (note that f(u”) E L(N) by (induction for 
(5))) the last (k + 1) firings oft, need not “produce” tokens for completingf(u”). So 
we can “postpone” the last (k + 1) firings of t,, and obtain another firing sequence 
u(t$+’ EL(N), which is a permutation of f(u”) such that (k + 1) . IN(t,,p) < 
M,(p) for all p E P where M,(u) Mr. That is, t, is (k + I)-enabled in N (contra- 
diction). Therefore M’,,(p,) > 1, and sol’ =f’(uy) tin E IQ”). 1 

LEMMA 5. For any uN EL(N”), there exists a; E (T’ - (tin})* such that 
U”UI E L(N”) and #(a”, tin) = #(u”U;, t,“t). 

ProoJ Let u” E L(N”) be an arbitrary tiring sequence. Sincef’(o”) E L(N;) by 
(5), by (WB2) there exists a; E (T’ - {tin])+ such that f’(u”)u; EL(N;) and 
#(f’(d’), tin) = #(f’(U”) UI)9 tout). So u”ur EL(N”) by (2) and #(a”, tin) = 

#(f’(““)r tin) = #(f’(U”) ul’, t,,J = +qu”Uy, t,,J. I 

THEOREM 6. 1fN" is m”-bounded, then N is m”-bounded. 

Proof By Lemmas 2 and 5, for every u E L(N) there exists u” E L(N”) such that 
f(~") = u and #(u”, tin) = #(u”, t,,J Let M,(U) M, and M{(u”) My. Then we have 
M,(p) = M:(p) < m” for all p E P by (1) and (4). Thus M is m/‘-bounded. 1 

A special case of Theorem 6 is stated as a corollary. 

COROLLARY 7. If N” is safe, then N is safe. 

ProoJ Set m” to 1 in Theorem 6. I 

THEOREM 8. If N is m-bounded and every place p E P’ of N;I is ml-bounded, then 
N” is m”-bounded where m” = Max(m, ml). I 

ProoJ Let u” E L(N”) and M{(u”) My. By (l), (3), and (4) we let 
M,,(f(u”)) M, and we have M:(p) < M,(p) < m for all p E P. Further, M;(p) = 
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MA,(p) < m’ for all p E P’, where M&,(f’(a”))i&, by (2) and (5). Therefore 
M:(p) < Max@ m’) for all p E P”; i.e., N” is m”-bounded where 
mN = Max(m, m’). 1 

A special case of Theorem 8 is stated as a corollary. 

COROLLARY 9. If N and B(N’, tin, tout, 1) are safe, then N” is safe. 

Proof: Set m and m’ to 1 in Theorem 8. 1 

EXAMPLE 3. In Fig. 2, N is 3-bounded, and p3 and p., of B(N’, t,,, tOUt, 3) are 5- 
bounded. So N” is 5-bounded by Theorem 8. 1 

THEOREM 10. IfN" is live, then N is live. 

Proof: Let u E L(N) be an arbitrary firing sequence. By Lemma 2 there exists 
6” E L(N”) such that f(u”) = u. Since N” is live, for any t E T there exists 
a; E (T/I)* such that a”o;t E L(N”). Then by (3) and the definition off, we have 
f (d’uy) = uf (uy)t E L(N). Therefore N is live. 1 

Condition A, stated next, is used to obtain a sufficient condition for N” to be live, 
when a transition t,, which is not (k + I)-enabled in N, is replaced by a k- WB subnet 
N’. 

CONDITION A. For any reachable marking ME R(N) of N = (P, T, IN, 
OUT, M,), to is k-enabled in the Petri net (P, T, IN, OUT, M); or equivalently, from 
any marking ME R(N) we can again reach a marking M, such that k . IN(t,,p) < 
M,(p) for all p E P. 

THEOREM 11. Suppose that N satisfies Condition A. If N and N; are live, then 
N” is live. 

ProoJ Let u” E L(N”) be an arbitrary tiring sequence. By Lemma 5 there exists 
al” E (T’ - (ti,))* such that u”uf E L(N”) and #(u”, tin) = #(u”uf, tout). 

(i) By (3) and the liveness of N, for any t E T we havef(u”u;) uz t E L(N) for 
some uz E T*. By (l), (4), and an argument similar to the one used in the proof of 
Lemma 2, u,t can be “simulated” by some firing sequence of N”. So there exists 
a; E (T”)* such that u”u[u;t E L(N”) (here f (cr”u~u;lt) = f (u”u;) o2 t). Thus every 
t E T - {to} is live in N”. 

(ii) By (3) we have f(u”u;) E L(N). Since N satisfies Condition A there exists 
some u2 E T* such that f(u”uf) uz E L(N) and k . IN(t,,p) <M,(p) for every p E P 
where M,( f (a”&‘) a*) M,. By (l), (4), Lemma 5, and an argument similar to the one 
used in the proof of Lemma 2, u2 can be “simulated” by a firing sequence a; E (T”)* 
of N”, and we obtain cYu;u$ E L(N”), f(u”u;u;) =f(u”u;) u2, and 
#(u”u;u;, fin) = #(u”u;‘u;, O”t t ). Note that by (1) and (4) at marking MI’ where 
M~(u”u;u;) M;, we have k . IN(t,,,p) < M;(p) for all p E P. Consider 
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u’ =f(u”a:al;) E (T’)*. u’ is a firing sequence of Nfi by (5). Since NL is live, for any 
t’ E T’ there exists some a; E (T’)* such that u’uit’ E L(NL). Now we show that 
air’ can be “simulated” by a firing sequence of N” by the correspondence of tran- 
sition firings described below. A tiring of any transition t E T’ - (fin} in ui can be 
simulated by a firing of the same transition in N”. The lst, 2nd,..., and kth firings of 
t,, in a{ can also be simulated by the firings of ti, in N”, since we have 
k . IN(t,,,p) Q M;(p) for all p E P. The k + ith firing of ti, in cr{, i > 1, can be 
simulated in N” by some u/tin, where a: E (T - (to})*, since by assumption N is live 
and thus ti, can be enabled by some firing sequence OF. Let u;lt’ E (T”)* be the 
firing sequence obtained when N” simulates ait’ of NL by the correspondence given 
above. We have shown that for any u” E L(N”) and t’ E T’ there are some uy, CT;, 
and a; such that u”u~u~u;‘t’ E t(N”). Thus all t’ E T’ is live in N”. 

So N” is live by (i) and (ii). 1 

An example to illustrate Theorem 11 will be given later in Sec. 6. 

EXAMPLE 4. In order to see why Condition A is necessary in Theorem 11, 
consider the nets N and N’ shown in Fig. 4. We observe that: 

(1) Transition t, in N is not 5-enabled (i.e., k = 4). 

(2) N’ is 4-WB with respect to ti” and t,,t. 
(3) N is live. 

(4) B(N’, t,,, c,,,~, 4) is live. 

However, the refined net N” obtained from N by substituting N’ for t, is not live, 
since t, can never be enabled. This means that some condition in Theorem 11 does 
not hold. Indeed, it can be seen that Condition A with k = 4’ in N does not hold 
(although it holds for k = 3). 1 

For the Petri net N, let W: P + A’ be a function that assigns a “weight” to each 
place. The weight may be interpreted as the amount of resources necessary to accom- 

N N’ 

FIG. 4. Illustrations for Example 4. 
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modate a data item in the place. Then CpEp M(p) W(p) represents the total resources 
required for any marking M. Similarly we let W’: P’ -+ 3V be a weight function for N’. 
We define the weight function W”: P” -+ fy for N”, where P” = PUP’, as 

W”(P) = W(P), p E P, 

= W’(P), p E P’. 

We define the followings: 

We have the following theorem. 

THEOREM 12. M,!&, < M,,, + M;,, . 

ProoJ Let u” E L(N”) be an arbitrary tiring sequence. By (l), (2), (3), (4), and 
(99 M;(p) GM,@) f or all p E P and M:(p) = ML,(p) for all p E P’ where 
Mi(u”) Mr, M,,(f(u”)) M, and A$,,(f,(a”)) MA,. Thus we have 

p;,, W(P) WI(P) < pT:r M,(P) W(P) + p,L, %,OJ) W’(P)* 

Hence the theorem. 1 

The above theorem is useful for estimating the maximum resource requirement at 
each stage of refinement. 

4. REFINEMENT OF PLACES 

In this section we consider a refinement method for 
method using the results obtained in the previous section, 
closely related. 

places. We analyze this 
as these two methods are 

First we define the S-transformation for Petri nets (“9’ for splitting). For a Petri 
net N= (P, T, IN, OUT, M,) and a place p. E P, the Petri net 
NS=S(N,po,pol,to,poz)= ((P- {pol)u {~ol,~mL Tu {to}, INS, OUTS,%)= 
(P”, T’, INS, OUT”, Mi) (see Fig. S(a), (b)) is a copy of N, except that p,, is split into 
two new places pol and p&65 P). New transition t,(& 7’) is connected only to pal and 
po2. Transition t, is the only output transition of po, and the only input transition of 
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poz. The input transitions of p,,, are exactly those of p,,, and the output transitions of 
p02 are exactly those of p,,. M:(p) = M,(p) for p E P - {pO), Mi(p,,) = M,(p,) and 
MS,(&) = 0. We have the following two lemmas. 

LEMMA 13. (a) For any u E L(N), there exists os E L(NS) such that u is a copy 
of os in which all occurrences oft, are deleted. 

(b) For any us EL(NS), u EL(N) h w en u is obtained from us by deleting all 
occurrences of t,. 

Proof: (a) Let u E L(N). Let us E (P)* be the sequence obtained from u by 
replacing every occurrence of each t E T by t, lN(t*po)t Then us E L(N’) and satisfies . 
the condition of the lemma. 

(b) Let u EL(N) and us E L(N’) be firing sequences such that #(a, t) = 
#(us, t) for all t E T. Let M,(u) M, and Mi(cr’) Ms. Then we have M,(p,) >, Mi(p,,) 
and M,(p) = MS(p) for all p E P - {pO}. Therefore,‘for any us E L(N’), the sequence 
u which is obtained from us by deleting all occurrences of t, is a firing sequence of 
N. I 

LEMMA 14. (a) N is k-bounded #NS is k-bounded. 

(b) pO is k-bounded in N tfl t, is not (k + 1)-enabled in NS. 
(c) If NS is live, then N is live. 
(d) If pO has at least one input transition and N is live, then NS is live. 

(a) and (b): (if): Let u E L(N) be an arbitrary firing sequence and M,(u) M,. 
Let us E L(N’) be the firing sequence obtained from u by replacing every occurrence 
of each t E T by tiN(rqpo)t, and Mu M:. Then we have M,(p,) = MS(p,,) and 
M,(P) = W(P) f or all p E P - {pO}. Thus if N is not k-bounded, N” is not k- 
bounded. If p,, is not k-bounded in N, then t, is (k + 1)-enabled in N”. 

(only if): Let us E L(N’) be an arbitrary firing sequence and Mi(oS) Ms. Let 
u E L(N) be the firing sequence obtained from us by deleting all occurrences of t,, 
and M,(u) M, . Then we have M,(P,)>W@,,J M,(P,) >W@,A and 
M,(p) = M;(p) for all p E P - {pO}. So if NS is not k-bounded, N is not k-bounded. 
If t, is (k + 1)-enabled in N”, then pO is not k-bounded in N. 

(c): For arbitrary u E L(N), let us E L(N”) be the firing sequence obtained 
from u by replacing every occurrence of each t E T by ttNN(‘vPo’t. Since N” is live, for 
any t E T there exists ai E (T’)* such that us&t E L(N’). Then we have uu, E L(N), 
where u, is the sequence obtained from ai by deleting all occurrences of t,. Thus N is 
live. 

(d): For arbitrary us E L(N’), let u E L(N) be the sequence obtained from us 
by deleting all occurrences of t,. Since N is live, for any t E T there exists u, E T* 
such that uu, t E L(N). Let u: E (TS)* be the sequence obtained from u, by replacing 

571/27/l-5 
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every occurrence of each t’ E T by t’t~UT(f’*po). L e x be a non-negative integer such t 
that asti E L(N’) and CJ ’ (x+1) @ L(W). Then astiai t E L(Ns). So each t E T is live t, 
in NS. Since OUT(t,p,) > 1 for some t E T, I, is also live in N” by a similar 
argument. Thus NS is live. m 

The hypothesis in (d) is necessary to avoid the case shown in Fig. 6. Here 
NS=S(N,potpol,to,p02) is not live, whereas N is live. 

Let N = (P, T, IN, OUT, MO) and N’ = (P’, T’, IN’, OUT’, Mh) (P n P’ = 9, 
T n T’ = () be Petri nets such that for some k E NY+, place p. E P is k-bounded in N, 
and N’ is k- WB with respect to two distinct transitions tin, tout E T’. Let 
N” = (P”, T”, IN”, OUT”, M{) = TR(S(N, po, pal, to, PO& N’, to, tin 3 tout), where 
pal , po2 r$ p, pal, po2 @ P’, t, ci!J T, and t, 12 T’ (see Fig. 5). That is, N” is the Petri net 

Y ” PO1 

t0 

F 
7” 0 &t 

(b) NS Cc) N’ 

v PO1 n 

PO2 

#y\ 

(d) N” 

FIG. 5. Refinement of a place: (a) h’, (b) N’=S(N,~o,~ol,t,,p,*), (c) N’ and (d) 

N” = TR(NS, N’, to, tin, tout). 
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0 PO 

PO1 8’ to 

(a) N (b) NS 
FIG. 6. A place without input transitions: (a) live N and (b) non-live N”. 

obtained from N by refining place pO by N’. Again, B(N’, tin 3 tout, k) is denoted by 
N;. 

Some properties of the N” constructed above are stated below. The proofs of the’ 
following results follow from Theorems 6, 8, 10, 12, and Lemmas 13 and 14. 

THEOREM 15. Zf N" is m”-bounded, then N is m”-bounded. 1 

THEOREM 16. Zf N is m-bounded and every place p E P’ of NL is m’-bounded, 
then N” is m”-bounded where m” = Max(m, m’). 1 

THEOREM 17. Zf N” is live, then N is live. 1 

Theorems 15, 16, and 17 are analogs of Theorems 6, 8, and 10, respectively. In 
order to state an analog of Theorem 11, we need the following condition. 

CONDITION B. For any marking ME R(N) there exists M, E R(N) such that 
M(o) M, for some u and M,(p,) = k; i.e., from any reachable marking M we can 
again reach a marking M, such that M,(p,) = k. 

THEOREM 18. Suppose that pO has at least one input transition and N satisfies 
Condition B. Zf N and NA are live, then N” is live. fl 

Let W: P + iy and w’: P’ + iV be weight functions for Petri nets N and N’, respec- 
tively. Let IV”: P” (=(P - (pO)) U (po1,p02) UP’)+ fy be the weight function for 
N” defined as follows: 

W”(P) = VP), PEP- IPilL 

= WP,), P’POl, 

= 0, P =Poz, 

= W’(P), p E P’. 
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We define the following: 

SUZUKIANDMURATA 

We have the following theorem. 

THEOREM 19. M& GM,,,,, tM&,. 1 

5. RELATED DECISION PROBLEMS 

In this section we investigate the problem of deciding whether a given transition in 
a Petri net is (k + I)-enabled for given k E iv, and the problem of deciding whether a 
given Petri net is k- WB for given k E N+. Also discussed is the decidability of 
Conditions A and B. 

We have the following theorems. 

THEOREM 20. It is decidable whether a given transition of a Petri net is (k + l)- 
enabled for given k E N. 

ProoJ Let N be a Petri net for which we wish to test whether a transition t, is 
(k + I)-enabled. We construct a new Petri net 4 as shown in Fig. 7. J? is a copy of N 
except that t, is split into new transitions t,, , tOZ, and a new place p, . The set of 
input places (or output places) of t,, (or t,,) is the same as that of to. Place p1 is the 
only output place (or input place) oft,, (or t,,). fi has the same initial marking as N, 
with p, holding no token. It should be clear from the construction in Fig. 7 that t, is 
(k + 1)-enabled in N iff p, is not k-bounded in I?. Now, since whether a given place 

. . . l-l # to . . . 
I I 

N . . . 

t01 m Pl 

t02 

. ??. 

(a) N (b) i 

FIG. 7. N and A in Theorem 20. 
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(b) B(i,t,t',l) 

FIG. 8. N and B(fl, t, t’, 1) in the proof (i) of Theorem 21. 

of a Petri net is k-bounded or not is decidable using the reachability tree [4], it is also 
decidable whether t, is (k + 1)-enabled in N. ! 

THEOREM 2 1. The decision problem for k-well-behavedness and the liveness 
problem for Petri nets are recursively equivalent. 

Prooj (i) Let N be a Petri net for which we wish to test whether a given tran- 
sition t is live. As shown in Fig. 8, we construct a new Petri net &? by adding the 
following to copy of N: 

- a new place p’ as an output place of t (initially p’ has no token). 
- a new transition t’ which has only one input place p’ and no output place. 

Consider B@, t, t’, 1) shown in Fig. 8(b). If t is live in N, it is easy to see that the 
conditions for well-behavedness (WI? I), (WB 2), and (WI 3) hold for k = 1 with 
respect to t and t’. Conversely, if fi is l-W? with respect to t and t’, then t is live in 
N. Thus we conclude that t is live in N iff A is 1-W. with respect to t and t’. 

(a) N (b) B(N,t,.t2.k; 

FIG. 9. N and B(N, t,, t,, k) in the proof (ii) of Theorem 21. 
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f 
N 

k+l 5 

L_ J 
FIG. 10. Test(O) in the proof of Theorem 21. 

(ii) Let N be a Petri net which we wish to test for k- WB, given k E fy+, with 
respect to two distinct transitions t, and I, (see Fig. 9(a)). That is, we wish to test 
whether B(N, t,, t,, k) shown in Fig. 9(b) satisfies (WB I), (WB2), and (WB 3). We 
construct k + 1 new Petri nets: Test(O), Test(l),..., and Test(k) as follows. 

Test(O): Test(O) is a copy of B(N, t, , t,, k) with two new transitions t, , t, , and a 
new place p, as shown in Fig. 10. Initially p1 has one token. Place p. must hold more 
than k tokens for transition f3 to fire. 

Test(i) (1 < i < k): Test(i), 1 < i < k, is shown in Fig. 11 (the arc (*) from p3 to 
I, does not exist in Test(k)). The operation of Test(i) is as follows. Before t, fires, 
Test(i) simulates the firings of N by the copy of N and f,. Transition t, can fire only 

k-i (*) 

k 

FIG. 11. Test(i), 1 6 i Q k, in the proof of Theorem 2 1. 
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when t, has tired exactly i times more than t,. The firing of t, moves the token in ps 
to ps, disabling t,. When p, has i tokens by the firings of t, and t,, t, fires and 
returns k tokens to p3. Transition t, can fire iff t, has fired exactly as many times 
as t,. 

(ii-l): Suppose that N is k-WB with respect to t, and t,. By (WB l), t, is live in 
Test(O). By (WB 3), the number of tokens in p,, is always less than or equal to k. 
Thus t, never fires, and t, is live in Test(O). Suppose that t, is not live in Test(i) for 
some i, 1 < i Q k. This means that there is a firing sequence u E L(Test(i)) such that 
at, E L(Test(i)) and t, cannot tire after ot,. That is, there is a firing sequence 
0, E VB(N, t,, t,, k)) such that #(a,, t,) = #(ul, tz) + i, and there is no 
u2 E (T- (t,})+ (T is the set of transitions of N) such that u1u2 E L(B(N, t,, t,, k)) 
and #(a,, tl) = #(a, u2, t,); i.e., (WB 2) is not satisfied (contradiction). Therefore t, 
is live in Test(i) for each i, 1 < i < k. 

(ii-2): If t, is live in Test(O), t, is live in B(N, t, t,, k) (( WB 1)). If t, is live in 
Test(O), t, never fires, so the number of tokens in p,, is always less than or equal to k 
(( WB 3)). Now suppose that ( WB 3) holds and (WB 2) does not hold. Then for some 
i, 1 < i Q k, there exists u, E L(B(N, t,, t,, k)) such that #(u, , t,) = #(u,, t2) + i and 
there is no u2 E (T- {cl})+ with u, uz E L(B(N, t, t,, k)) and #(a,, t,) = #(a, u2, tz). 
Then in Test(i), after simulating u, by the copy of N and t, (since (WB3) holds by 
assumption, Test(i) can always simulate N), t, can fire, and t, cannot fire after that, 
since t, cannot tire i times without t, firing. So t, is not live in Test(i). Therefore if 
(WB 3) holds and t, is live in Test(i) for each i, 1 < i < k, then (WB 2) holds. 

From (ii-l) and (ii-2), we see that N is k- WB with respect to t, and t, iff t, and t, 
are live in Test(O) and t, is live in Test(i) for all i, 1 < i < k. 

From (i) and (ii), we conclude that the decision problem for k-well-behavedness 
and the liveness problem are recursively equivalent. 1 

So k-well-behavedness is a decidable property as shown in the next corollary, since 
the reachability problem for Petri nets, which is equivalent [4] to the liveness 
problem, has recently been shown to be solvable [7,8]. However, Theorem 21 tells us 
that the decision problem is computationally intractable in general. 

-.. 
H to . . 

I I 

(a) N (b) F^I 
FIG. 12. N and A in the proof of Theorem 23. 
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FIG. 13. N and fi in the proof of Theorem 24. 

COROLLARY 22. The decision problem for k-well-behavedness is solvable. i 

THEOREM 23. It is decidable whether a given Petri net satisfies Condition A. 

ProoJ To test whether Petri net N satisfies Condition A with respect to transition 
t,, construct another net 15 which is a copy of N except that t, is replaced by new 
transitions to,, t,, , f and a place pL with no token initially, as shown in Fig. 12. Tran- 
sition i can fire only when pI has at least k tokens. By a similar argument to the one 
in the proof of Theorem 20, we see that N satisfies Condition A with respect to to iff i 
is live in #. Then the theorem follows from the decidability of liveness. 1 

THEOREM 24. It is decidable whether a given Petri net satisfies Condition B. 

Proof: To test whether Petri net N satisfies Condition B with respect to place pO, 
construct another Petri net Z? as shown in Fig. 13. fl is obtained by adding to N a 
new transition i that self-loops on pO with arcs weighted k. Clearly N satisfies 
Condition B with respect to pO iff t^ is live in #. Then the theorem follows by the 
decidability of liveness. I 

6. ILLUSTRATIVE EXAMPLES 

In this section, two examples are given to illustrate our method of Petri net 
transformations. The first example shows that the marked graph transformations 
reported earlier in [5, 1 I] can be interpreted by our transformations of transitions. 
The second example illustrates the use of Theorems 10 and 11 for the liveness 
analysis of Petri nets. 

6.1. EXAMPLE 5. Recently it has been shown [S, 111 that p(G), the number of 
equivalence classes of live and safe markings where the equivalence is defined by the 
mutual reachability of two markings, is either invariant, or computed by a formula 
when certain transformations are applied to a marked graph G. So far, six types of 



71 STEPWISE REFINEMENT OF PETRI NETS 

(al N (b) N" 

FIG. 14. Series expansion. 

such transformations are known, and they are referred to as series, parallel, unique 
circuit, Y-V, separable graph, and unique path transformations. These transfor- 
mations are useful for both analysis and synthesis of marked graphs. They can be 
used to synthesize decision-free concurrent systems, with the following prescribed 
properties: p(G), liveness, safeness, performance, and resource requirements [6,9]. 
The marked graph transformations can deal with more porperties than the Petri net 
transformations, but the former turn out to be special case of the latter as far as 
liveness and safeness are concerned. In the following, the first four of the six marked 
graph transformations are interpreted in terms of our transformations of transitions 
(interpretation of the last two transformations are found in [ 13 I). Thus, it provides 
another way of proving that the marked graph transformations preserve liveness and 
safeness. The term “transformation”, as used here, means both expansion 
(retinement) and reduction (abstraction), where the latter is the reverse operation of 
the former. 

Note that since the marked graph transformations considered here are transfor- 
mations among live and safe marked graphs, each transition t, to be refined is not 2- 
enabled and Condition A is satisfied with k = 1. 

(i) Series Transformation. Series expansion adds a place e’ in series with a place 
e as is shown in Fig. 14(a) and (b). This transformation can be regarded as the 
refinement of transition t, .by subnet -N’ indicated in Fig. 14(b). Since N’ 
behaved, N” is live and safe by Corollary 9 and Theorem 11. Conversely, 

Fi.M+H 

(a) N (b) N, (c) N” 

FIG. 15. Parallel expansion. 

is l-well- 
the series 
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reduction from N” to N preserves liveness and safeness by Corollary 7 and 
Theorem 10. 

(ii) Parallel Transformation. Parellel expansion adds a place e’ in parallel with 
a place e as is shown in Fig. 15(a) and (c). This expansion is regarded as a 
combination of two Petri net transformations from Fig. 15(a) to (b) and then from 
(b) to (c), where the former is an abstraction of a subnet to a transition t,, and latter 
is a refinement of t,. 

(iii) Y-V Transformation. Figure 16 illustrates Y-V expansion. This is the same 
type of refinement of a transition t, as the series expansion. Thus the same argument 
as in (i) applies. 

(iv) Unique Circuit Transformation. When there exists a unique path plz from a 
transition t, to another transitioh t,, addition of a place having a token together with 

. . 
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. . 
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el 5 Y t out 

N’ 1 e’ 

tin 
: . 
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: . . . . 

9 5 Y 1 
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N’ e' 

t out . 
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N N” 

FIG. 16. Y-V expansion. 
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(b) N” 

FIG. 17. Unique circuit expansion. 

an arc from t, to p and another arc from p to t I creates a unique directed circuit 
containing p. This transformation is referred to as the unique circuit expansion. 
Before adding the place p with one token, each place on plz must be made token-free 
(see Fig. 17(b)). In this case the given Petri net itself is l-well-behaved with respect to 
t, and t,, and thus this expansion can be viewed as the refinement of transition t, in 
the live and safe Petri net N shown in Fig. 17(a) by the given Petri net. 

Note that the subnet used in each of the Petri net transformations considered above 
is k-well-behaved, not only for k = 1 but also for any integer k > 2. However, it is 
sufficient to use k = 1 for live and safe Petri nets. In this respect, the stepwise 
refinement method of Valette [ 141 can be used to interpret the above marked graph 
transformations. 

6.2. EXAMPLE 6. The Petri net N shown in Fig. 18 is a non-free choice and non- 
simple net (in the sense of Hack [4]). The net can be interpreted as a representation 
of a system consisting of one producer (subnet NA) and two consumers (subnets N, 
and NC). The producer puts items in the buffer represented by place f. The two 
consumers can remove items from the buffer in a mutually exclusive manner. (Note 
that consumer NB removes two items at a time.) The number of tokens in place e 
represents the size of the empty space in the buffer. The initial marking shown in 
Fig. 18 shows that the buffer is of size n > 2 and initially empty. Using the above net 
N, we illustrate how to apply Theorems 10 and 11 to divide the liveness analysis of a 
large Petri net into the analysis of smaller nets. First we reduce N to the net N, 
shown in Fig. 19 by substituting transitions tA , tB, and t, for the subnets, NA , NB, and 
NC shown in Fig. 18, respectively. It is easy to see that t, is not (n + I)-enabled in 
N, , and that t, and tc are not 2-enabled in N, . Then by Theorem 11, the liveness 
analysis of N can be “divided” into the following analyses of the smaller nets 
N, , NA , NB, and NC. That is, N is live if the following statements (I) to (7) are true: 

(1) N, is live. 
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i. 

FIG. 18. N of Example 6. 

(2) N, satisfies Condition A with respect to tA and k = n. 

(3) N, satisfies Condition A with respect to te and k = 1. 

(4) N, satisfies Condition A with respect to t, and k = 1. 

(5) N,., is n- WB with respect to t1 and t,, and the net B(N, , I,, tz. n) is live. 

(6) NB is I-WB with respect to t, and t,, and the net B(N,, t,, t,, 1) is live. 

(7) Nc is l- WB with respect to t, and t,, and the net B(Nc, t, , t,, 1) is live. 

For this particular example, the subnets are so small that the above statements (1) 
to (7) can be verified by inspection, and it is easy to see that N is live. 

w 
FIG. 19. N, of Example 6. 
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Now suppose that n = 1 in N, shown in Fig. 19, i.e., the size of the buffer is one. It 
is easy to see that te is dead, and that N, is not live. By Theorem 10, the net N shown 
in Fig. 18, which is a refinement of N, , is not live. 

7. CONCLUSION 

A technique for the stepwise refinement and abstraction of Petri nets has been 
presented. The presented method is more general than those reported earlier in 
(5, 11, 141. As was illustrated elsewhere [2,6,9-l 1, 141, the application of these 
methods is two-fold. First, the abstraction (reduction) technique can be used as a 
“divide-and-conquer” approach for the analysis of liveness, boundedness, resource 
requirements, etc., for large scale Petri nets. Second, the refinement (expansion) 
technique can be used as a top-down approach for growing (synthesizing) a Petri net 
model of a system from an abstract level to a desired level of detail. During this 
process of growth, it is possible to prescribe liveness, boundedness, resource 
requirements, etc. In this respect, the technique can serve a paradigm for writing 
“good” (deadlock-free and overflow-free) programs or design plans of concurrent 
systems in a top-down manner. However, the present transformation techniques can 
apply only to a limited topology (a subnet having a pair of ti, and &). Further 
study is suggested on transformations applicable to more general topologies. 
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