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Abstract

We present AHIR, an intermediate representation (IR),
that acts as a transition layer between software compilation
and hardware synthesis. Such a transition layer is intended
to take advantage of optimisations available in the software
compiler flow, and also to provide freedom to the low-level
synthesiser, to explore options for application-specific im-
plementations. Two operations become possible — reuse
of computational resources across different modules in the
design, and generation of an application-specific memory
subsystem for faster data accesses.

AHIR presents a decoupled view of the program, in terms
of control flow, data flow and memory accesses. Each mod-
ule in AHIR is a triplet consisting of a control-path, data-
path and a symbolic association between the two. Memory
is represented only by load-store operators, while the mem-
ory subsystem is separately designed by the implementor.

In the program-to-hardware flow, a module in AHIR cor-
responds to a function in C. A complete program is a call-
graph of functions, which is translated to a set of modules.
The call-graph is restricted to be a DAG; recursion is not
allowed. The representation is generated by a back-end in
the software compiler, which runs after all source-level op-
timisations have been performed by relevant passes.

1. Introduction
Digital VLSI platforms form a spectrum of products, that

offer a trade-off between good performance and rapid de-
ployment. Application Specific Integrated Circuits (ASICs)
represent the extreme in terms of performance, while mi-
croprocessors provide a generic platform that allows rapid
development and deployment of applications.

A number of platforms have emerged, that fall be-
tween these extremes, such as Field Programmable Gate Ar-
rays (FPGAs), Structured ASICs[13], Field Programmable
Functional Arrays (FPFAs)[10], FPGA-ASIC hybrids[14]
and reconfigurable processor cores[12].

The availability of such platforms has created interest-
ing alternatives to microprocessors in digital applications.
But simple and automated design flows are needed to utilise

the potential of these platforms. An attractive avenue is a
high-level synthesis flow that translates programming lan-
guages into hardware descriptions. This allows existing
software programmers to design application specific digital
hardware.

1.1. Related work

A number of attempts have been made to create a path
from high level programming languages to hardware spec-
ifications. Some approaches either extend or restrict the C
language, in order to allow programmers to write synthesis-
able C code.

SA-C[1] disallows pointers, and extends the syntax for
arrays, designed specifically for DSP algorithms. Handel-
C[2] provides a timing guarantee of one clock cycle per pro-
gram statement, and constructs such as parallel execution,
variable width data-types, semaphores, channels, etc. But
the compiler cannot optimise the code, since any rearrange-
ment in the statements will violate the timing model.

Another approach is to introduce a hardware intermedi-
ate representation in a software compiler, and send this to
a hardware back-end. The representation is based on data
flow graphs[4], augmented to handle side-effects in exter-
nal memory. The Phoenix project uses an intermediate rep-
resentation called PEGASUS for a compiler flow from C
to hardware[5]. PEGASUS is a data flow representation,
that uses handshakes to exchange data between operators
designed as micropipeline stages[11].

Synchronous data flow[6] is a subset of data flow graphs,
that is well-suited for DSP applications. Here, the number
of tokens consumed or produced by each node on execution
is specified a priori, independent of the data. This disallows
conditional execution of nodes, and hence cannot be used
for general applications.

1.2. Our approach

Like PEGASUS, AHIR uses handshakes to transfer data
across operators. But where PEGASUS assumes unlimited
hardware, AHIR includes hardware reuse as one of its goals.
This is achieved mainly by decoupling the control and data
flows in the program.



AHIR is an attempt to provide a synthesis path that
builds on existing high-level compilers. The representation
is generated by a compiler back-end, independent of the in-
put language used. The program may have been written in
any kind of programming environment, such as sequential
or concurrent execution.

The design is expressed only in terms of operations, and
mandates minimal timing constraints on the implementa-
tion. The synthesiser has freedom in exploring various im-
plementation options within these constraints. AHIR thus
positions itself as a convenient transition point that glues to-
gether high-level compilation and low-level synthesis flows.

2. Formal specification for AHIR
Two different, but closely related, flows are exposed in

AHIR: control-path and data-path. The data-path consists
of hardware elements connected by wires. The control-path
is a state machine, that defines the sequence in which differ-
ent operations are triggered. Events in the data-path trigger
state changes in the control-path, which in turn trigger more
events in the data-path.
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Figure 1. Communicating IR modules

A program expressed in AHIR is a collection of modules.
A module is a tuple consisting of three entities — data-path,
control-path and a link-layer that provides a symbolic as-
sociation between the two. A module communicates with
other modules using two mechanisms — a link-layer that
passes control information, and external memory for pass-
ing data values.

Table 1. The Intermediate Representation

IR program : ({IR module}, Inter-LL, Ω)

IR module : (DP, CP, Intra-LL, Σ, Λ)

DP : data-path

CP : control-path

Inter-LL : inter-module link-layer

Ω : alphabet for inter-module signalling

Intra-LL : intra-module link-layer

Σ, Λ : alphabets used by the DP and CP respectively

The different paths and link-layers interact through the
exchange of symbols. The set of symbols associated with
a component is called its alphabet. The data-path uses al-

phabet Σ, while the control-path uses alphabet Λ. Similarly,
the interaction between modules is represented by symbols
from the alphabet Ω.

The two paths within a module communicate through
symbolic handshakes. The control-path emits a symbol to
initiate an operation in the data-path, while the data-path
eventually emits a symbol to signal completion. This mech-
anism ensures delay-insensitive synchronisation between
the two paths.

Figure 2. Symbolic handshakes

2.1. Data-path

The data-path is a collection of operators that accept
multiple inputs and may produce multiple outputs. Each
output is connected to a wire, that transmits the generated
value to the inputs of other operators. An output produced
by the operator is registered, and remains valid on the wire,
until it is updated by a subsequent re-invocation.

Table 2. Data-Path

DP : (DE, W, MA, Σ)

DE : O ∪D ∪M

O : operator nodes with a sequence of operands

D : decoders that translate boolean values to symbols

M : multiplexers

W : wires with a single driver and multiple loads

MA : memory access elements

Σ : symbolic alphabet for the data-path

Each operator in the data-path is triggered by an input
symbol Req ∈ Σ. The operator produces a symbol Ackj ∈
Σ for each output resultj of its m data outputs. Thus the
availability of each data output is signalled independently.

Table 3. Data-path operator

operator : (operation, [opndk], Req, {(resultj , Ackj)})
where opndk : input data transmitted by a wire wk ∈ W

Req ∈ Σ : input symbol that triggers the operator

resultj : one of possibly multiple data results

Ackj ∈ Σ : output symbol indicating availability of resultj

The data-path incorporates “memory access units” that



accept address and data for memory operations. These units
expect to present a load/store request to the memory sub-
system, that is guaranteed to be serviced eventually. The
addresses are generated by ordinary operators in the data-
path. Mechanisms for external storage can be chosen inde-
pendently by the implementor.

2.2. Control-path

The control-path is a Petri net[8], that expresses the se-
quence of operations in the data-path. Transitions in the
Petri net represent initiation and completion of various op-
erations in the data-path.

Table 4. Control-Path

CP : (T, P, E, M0, Λ)

T : {transition}
P : {place}
E : edges (u, v) ∈ (T × P ) ∪ (P × T )

M : P → {0, 1, 2, ...} labelling function

M0 : initial labelling

Λ : symbolic alphabet for the control-path

A transition is termed an input or output transition, based
on whether it receives or emits a symbol when fired. When
an output transition is enabled, it immediately fires, produc-
ing an output symbol for the environment. When an input
transition is enabled, it waits for the environment to produce
the associated input symbol. An input symbol that arrives
when the corresponding transition is not enabled, is consid-
ered an error.

2.3. Link-layers

Events in the modules need to be associated in a way that
represents the behaviour of the original program. This as-
sociation is provided by the link-layer. There are two kinds
of link-layers — the inter-module link-layer (Inter-LL) and
the intra-module link-layer (Intra-LL).

Table 5. Link-Layers

Intra-LL : ((Λ → Σ, Σ → Λ), (Λ → Ω, Ω → Λ))

Inter-LL : {(Server, {Client})}
Client : (Lock, Unlock, Grant, Release, {(Req, Ack)})
Server : {(Req, Ack)}

The Inter-LL translates symbols exchanged between
control-paths of multiple modules. The Intra-LL manages
the symbols exchanged by the control-path, data-path and
the Inter-LL.

The Inter-LL also captures the arbitration signals used
by modules to gain access to other modules. When a server
module is accessed by one of multiple client modules, the

client must acquire access using the Lock symbol. A arbi-
tration mechanism responds by generating a Grant. Sim-
ilarly the client releases access using Unlock which is ac-
knowledged by the corresponding Release. These sym-
bols are defined in the alphabet Ω. The client then commu-
nicates with the server using Req-Ack handshakes trans-
lated through the Inter-LL.

2.4. Delay constraints

In Fig. 3 we show a hypothetical example, with associ-
ated delays. The numbered delays d0 to d5 in this figure are
not individual values, but representatives of their respective
class of delays.

Figure 3. Delays

Delays are captured by handshakes between the control
and data-paths in AHIR. In order to guarantee correct exe-
cution, AHIR imposes delay constraints on the implemen-
tation of a specification.

The arrival of an input symbol Ack ∈ Σ at an input tran-
sition, when it is not enabled, is considered an error. For
this constraint to hold, the implementation must ensure that
tokens to the enabling places must arrive before the symbol
arrives, so that the transition is activated in time. This is
captured by the following expression:

d5 ≤ d0 + d1 + d3

The dual of this fork occurs, when a data-path element
produces a result and emits the corresponding output sym-
bol. The control-path will eventually trigger some other
data-path element that uses this result. Data must arrive at
the second element before the request Req ∈ Λ.

d2 ≤ d3 + d4 + d0

The term d0 + d3, made of delays in the link-layer, is
common to both expressions. An implementation can al-
ways guarantee faithfulness by sufficiently padding either
or both of these delays, to satisfy the inequalities.

3. Simulation
We describe a simulation scheme for AHIR that forms

a reference implementation, modelling the fastest possible
execution, without violating the timing constraints. We start
by setting the interconnect and link-layer delays to zero.



d2 = d3 = 0; d5 = d0 = 0

The above expressions satisfy the inequalities stated ear-
lier. One of the remaining delays d4 and d1, must be set
to δ(delta), so that the notion of a “simulation cycle” is de-
fined. Setting d1 as δ is a natural choice, since it corre-
sponds to combinational delays in the data-path.

d4 = 0; d1 = δ

In the simulation, the translation of symbols across the
link-layer is instantaneous. The response of the control-path
to input tokens is also instantaneous. But the response of the
data-path is available only in the next simulation cycle. The
simulation can now be represented by a simple loop:

for ever do
repeat

execute CP, Intra-LL, Inter-LL
until all signals stabilise
execute DP

end for

4. Back-end for a C compiler
We describe a compiler back-end that translates C pro-

grams to their AHIR representation. The input is a C pro-
gram in the Static Single Assignment (SSA) form. The out-
put is a formally correct translation of the program to an IR
form. The back-end assumes that all source-level optimisa-
tions have been already performed on the program. Recur-
sive functions, function pointers and variable arguments are
currently not supported.

4.1. Static Single Assignment (SSA)

The SSA form[7] is designed to remove the notion of a
“variable” from a program. Every statement that defines a
variable, provides a unique “version” of that variable. At
the exit of a control structure such as a branch or a loop,
multiple definitions of the variable may be available, only
one of which is valid. This is captured by the φ-function in
SSA, as seen in Fig. 4.

4.2. Control Data Flow Graphs (CDFG)

The SSA program is translated into a Control Data Flow
Graph (CDFG) as shown in Fig. 5(a). In a CDFG, instruc-
tions are represented as nodes, connected by control and
data edges. The data edges represent the flow of values
from their definition to their use, while control edges rep-
resent the sequence of operations to be enforced. The edges
in the CDFG arise from three kinds of dependences in the
original program:

• data dependences between instructions, that create
data as well as control flow

S0: d1 = m1 + n1
S1: b1 = m1 - n1
S2: if (b1 > 0)
{
S3: a1 = b1 + c1
S4: d2 = e1 + a1
}
S5: d3 = φ(d2,d1)
S6: x1 = d3 + 2

(a) SSA form

A1 = add m1, n1
S1 = sub m1, n1
C1 = cmpgt S1, 0
Br = br C1,L1,L2
L1 = label
A2 = add S1, c1
A3 = add e1, A2
L2 = label
P1 = phi A3, A1
A4 = add P1, 2

(b) Instructions

Figure 4. A sample input program

• control dependences in loops and branches, that create
control flow

• external dependences for memory references, that cre-
ate control flow

The current implementation takes the most conservative
approach towards external data dependences. Control edges
are introduced between memory operations, that preserve
the order in which they occur in the original program. This
allows only one memory operation at a time, but a smarter
implementation may use reference analysis to parallelise
memory accesses where possible.

4.3. Control and Data Paths

The control and data-paths in AHIR are obtained from
the control and data edges in the CDFG respectively, as
shown in Fig 5. A number of details have been omitted
from the figure, in order to keep it readable. The symbols in
alphabet Σ for each data-path element are not shown. Ev-
ery pair of transitions connected by an edge also has a place
along that edge. Each transition is associated with an in-
coming or outgoing symbol.

5. Specific structures in AHIR
Two structures are visible in AHIR, that represent points

of execution where the control and data-paths directly influ-
ence each other. These points occur in the form of branches
and φ-functions.

5.1. Conditional branches

At a branch instruction, a boolean value generated in the
data-path is used by the control-path to decide the next op-
eration. AHIR uses a decoder element in the data-path to
translate the boolean value into symbols. This element is
activated by an input Req, but emits one of two output sym-
bols — true or false, based on a single boolean input.

The control-path creates a place with two output transi-
tions, called as a “choice” in a Petri net. The symbol from
the decoder causes one of the two transitions to fire, execut-
ing the appropriate branch in the control-path.



(a) CDFG (b) Control-Path (c) Data-Path

Figure 5. Deriving the hardware specification from a CDFG

(a) Petri net Choice (b) Condition Decoder

Figure 6. A conditional branch

5.2. The multiplexer as a φ-function

The φ-function in SSA represents a point where the
control-path influences the flow of values in the data-path.
Two control edges reach a φ-function, from two different
preceding basic blocks. Associated with each control edge
is a data edge whose value is forwarded by the φ-function if
that control edge is followed.

The φ-function is replaced by a multiplexer in the data-
path, with two data-inputs and corresponding two request
symbols. When it receives one of the two symbols, the mul-
tiplexer forwards the corresponding data-input to the output,
and generates an acknowledge. The schematic for a multi-
plexer and the corresponding structure in the control-path
are shown in Fig. 7.

(a) Control-Path (b) Data-Path

Figure 7. A φ-function in AHIR

6. Representing a complete C program

A C program consists of a call-graph, where nodes rep-
resent functions, and an edge (f, g) implies that function
f includes a call to function g. The function-calls involve
transfer of data as arguments and return values, along with a
transfer of control from the caller to the callee. AHIR spec-
ifies a post-box model for passing of arguments between
such functions, and uses the inter-module link-layer to sig-
nal function calls and returns.

The formal parameters of a function form its input ad-
dress space, while its return values form the output address
space. Every caller function must read from or write to
these address spaces when calling a function. The linker
assigns memory locations to these address spaces for each
function, and propagates these locations to all its caller
functions.

The caller function f first acquires access to the called
function g. It then writes to the specified input locations and
emits a request symbol in Ω, that is passed through the Inter-
LL, to the function g. The function g indicates completion
using another symbol in Ω. The caller can now read the
return values from the corresponding output locations.



6.1. Current state of the AHIR compiler

A compiler flow that utilises this IR has been imple-
mented using LLVM[3]. The first step is an LLVM back-
end that produces a hardware specification in AHIR, as an
XML file. This description is made of one module for each
function in the input program, with arguments and static
allocations assigned to memory locations from a global ad-
dress space. The function calls are translated to control and
data communication as described.

This XML specification is used by stand-alone programs
to generate a SystemC simulation model, and synthesisable
VHDL code. The SystemC simulator can generate a trace
of events occurring in the modules. The VHDL is meant
to be a proof of concept, with an initial focus on correct
and complete execution. Hence, the XML specification is
mapped directly to VHDL, with one entity per control or
data-path, and one signal per symbol in the entire descrip-
tion.

7. Conclusion
We have established a complete flow from a high-level C

program to a hardware description using AHIR. AHIR pro-
vides a glue layer that combines software compilers with
hardware synthesis to enable a novel hardware design flow.
Such a flow makes “soft” architectures feasible, that in-
crease flexibility in design, at acceptable hardware over-
heads.

The development process begins with an executable
source program, that is verified at a software level. The IR
presents a complete specification of the hardware, while the
simulator provides information about memory accesses and
operator utilisation to aid in hardware optimisation. Hard-
ware created in this manner may not compete with hand-
designed implementations in performance, but the savings
in the overall design cycle are large enough to offset the
performance overheads.

8. Opportunities
The decoupled nature of the specification allows trans-

formations that optimise the resulting hardware. For exam-
ple, computing resources can be shared across modules, by
generating a joint specification of multiple data-paths.

Figure 8. Joint implementation of modules

The intra-module link-layer provides the necessary flex-
ibility for such a reuse. The joint specification can reuse re-
sources, since AHIR allows arbitrarily complex elements in

the data-path (Section 2.1). A transformation can map op-
erations across the original data-paths to such elements in
the combined data-path, provided the symbolic handshakes
are correctly interpreted.

The memory system can also be implemented indepen-
dently, and made arbitrarily complex in order to improve
access times and reduce bottlenecks.

8.1. Equivalence

The generated AHIR specification is equivalent to the
source program. This can be shown by demonstrating an
isomorphism between the CDFG derived from the source,
and the AHIR specification[9]. A similar equivalence must
be maintained by optimisations performed on the specifi-
cation, and by the hardware description generated from the
specification.
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