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Abstract—With rapid increase in the size and performance of
VLSI systems, it is now possible to map increasingly complex
applications to hardware. However, the design effort involved
in mapping an algorithm to hardware is substantial. Low-
power embedded microprocessors have gained favour as reliable
platforms for rapid development and deployment of algorithms
in hardware. We present a complete flow from algorithm to
hardware as an alternative to embedded microprocessors. The
flow supports an essentially unlimited class of programming
languages, and generates circuits that are correct by construction.

The flow uses an intermediate representation called AHIR,
which is an orthogonal factoring of the program behaviour into
control, data and memory aspects. This allows optimisations that
are scalable to very large systems. We demonstrate the flow using
examples ranging from stream ciphers to database and linear
algebra applications, and show that the resulting circuits are
competitive with processor based implementations.

I. INTRODUCTION

The design of large hardware systems is expensive due to
two reasons: the need for trained manpower, and verification at
every step of the process. One way to overcome this difficulty
is to deploy low-power embedded microprocessors so that
training and verification is moved to the software domain.
We present a high-level synthesis flow as an alternative that
provides a verifiable and optimisable path from executable
specifications[3] to efficient hardware. The synthesis flow is
made competitive by the following features:

1) It is independent of the programming language used.
2) It guarantees correctness of the implementation.
3) The intermediate representation used supports optimisa-

tions that can scale with the size of the program.

Such a flow eliminates the need for design expertise and
also the need to verify the resulting hardware. It is sufficient
to verify the input specification (the program), which can be
done using standard software techniques.

The synthesis flow introduces an intermediate step in the
form of a representation called AHIR (A Hardware Interme-
diate Representation). The representation is independent of the
programming language used, and can be routinely translated
to a hardware implementation, while also supporting scalable
optimisations[1][2].

II. RELATED WORK

Attempts at creating a path from high-level programs to
hardware descriptions, can be loosely categorised as follows:

A. Improvements over RTL

Efforts like Bluespec[4] raise the abstraction in an RTL
description in order to support higher-level constructs. Such a
language can be very powerful in expressing the architecture
of the hardware, but the target user is a hardware designer
who can effectively utilise this expressive power.

B. Modified high-level languages

Some efforts reinterpret programming languages as hard-
ware descriptions, and also extend them with special features.
The language SA-C[5], for example, is a purely functional
subset of C that disallows pointers. On the other hand,
Handel-C[6] is a language that guarantees complete ISO-C
compatibility and also provides additional primitives.

In both examples, the designer must use specific features to
generate efficient hardware, instead of the compiler inferring
a hardware implementation. This forces the programmer to
revaluate standard programming practises.

C. High-level programs as hardware specifications

Some efforts simply interpret a program as a behavioural
specification, which is mapped to a hardware implementation
using an intermediate representation.

For example, the Phoenix project uses an intermediate
representation called Pegasus[7] for a compiler flow from C
to hardware[8]. A description in Pegasus can be implemented
as a micropipeline. The representation allows the compiler to
natively implement a number of high-level transformations.

The SPARK[9] project uses an internal representation based
on hierarchical task graphs (HTG). The compiler uses a
heuristic to combine high-level transformations on the HTG —
such as code motion and speculation[10] — with scheduling
and resource binding to produce efficient hardware.

Our work is similar, since the goal is to transparently
compile programs into hardware. AHIR differs from both
Pegasus and SPARK since it factorises the system into three
separate components: control flow, data flow and memory. This
is the key to a compiler flow that can scale to very large
systems. The components can be optimised and implemented
separately as long as specified constraints are satisfied.

III. AHIR

A system in AHIR is a collection of modules connected
to a memory subsystem as shown in Fig. 1. Each module
represents one function from the input program. Function



Fig. 1. An AHIR system.

Fig. 2. An AHIR module.

calls are implemented through an inter-module link layer. The
architecture of the memory subsystem is not defined in AHIR.
It is only required to service every request eventually.

A. A module in AHIR

Two flows are described in an AHIR module — control-path
and data-path — that communicate through an intra-module
link layer as shown in Fig. 2. The control-path is a petri-net
that specifies the ordering of events in the module. The data-
path is a pool of hardware resources connected by wires.

Communication through the link layers is specified as an
exchange of symbols. The set of symbols associated with a
component is called its alphabet. The data-path uses alphabet
Σ, while the control-path uses alphabet Λ. The interaction with
the inter-module link layer is represented by the alphabet Ω.

B. Data-path

The data-path is a directed hyper-graph, where the edges
represent values, and the nodes represent operations on these
values. Each edge is a hyper-edge with a single tail and one or
more heads. The tail drives a value on the edge, which reaches
all the heads instantaneously.

A data-path node is described by a state machine with an
idle state, and one or more busy states. When a request reqi

arrives at an idle node, the node samples all its incoming data-
edges and changes state to busyi. The node then operates on
the sampled values and updates the outgoing data-edges. On
completion, the node emits an acknowledge symbol ackj , and
then returns to the idle state.

The data-path uses load and store operators to communicate
with external memory. Additionally, there are input and output
ports that are used to exchange arguments and return values
with the inter-module link layer during a function call.

Fig. 3. Delays in an AHIR specification.

C. Control-path

The control-path is a petri-net that expresses the sequence
in which events occur in a module. It is required to be in a
class called “Type-2 Petri-nets”, as defined in Section IV.

The control-path has a single marked place in the initial
marking. This enables a single transition called init, which
responds to a request symbol in alphabet Ω and begins
execution of the module. The end of execution is represented
by the fin transition that emits an acknowledgement symbol
in Ω and marks the initially marked place.

D. The Intra-module Link Layer

The intra-module link layer translates symbols generated
by the control-path (in Λ) to symbols for the data-path (in
Σ) or the inter-module link layer (in Ω), and vice versa. It
is defined as a set of functions that instantaneously consume
symbols presented to them and generate new symbols.

E. Handshakes and delay constraints

Operations in AHIR are managed by symbolic handshakes.
The control-path emits a request in Λ, which triggers an
operator in the data-path. When done, the operator emits an
acknowledge in Σ, which causes further events in the control-
path. This request-acknowledge handshake encapsulates any
delays in the implementation.

An implementation must satisfy a pair of one-sided delay
constraints for the handshake in order to ensure correctness.
Fig. 3 shows a hypothetical example with associated delays.
When the control-path emits the request symbol Req, it must
update its state before the arrival of the acknowledgement
symbol Ack. Hence we have:

d5 ≤ d0 + d1 + d3

Similarly, when the data-path emits an Ack, it eventually
receives a Req. The data inputs must have stabilised before
this request arrives. Hence we have:

d2 ≤ d3 + d4 + d0

Note that the term d0 + d3 is common to both expressions.
An implementation can always guarantee timing correctness
by sufficiently padding these delays to satisfy the constraints.



Fig. 4. A TPR and a Type-1 petri-net

(a) Primitive (b) Series (c) Fork (d) Branch

(e) Parallel merges

Fig. 5. Type-2 construction rules.

F. Execution model

AHIR uses a synchronous execution model. The control-
path responds instantaneously to the arrival of symbols, while
data-path elements take one or more cycles to execute. Values
in the data-path are also propagated instantaneously. Clearly,
this satisfies the delay constraints, since d1 is finite, while
other delays are zero.

G. The Inter-module Link Layer

The inter-module link layer is used to route function calls
between modules. It has one arbiter for each module, that man-
ages the flow of input arguments and return values between
the calling module and the called module.

IV. TYPE-2 PETRI-NETS

We propose a class of petri-nets called Type-2, based on a
set of standard construction rules. The structure of a Type-2
petri-net is designed to enable analyses and transformations
that are scalable with the size of the petri-net.

Definition 4.1: A simple place (transition) is a place
(transition) with one incoming edge and one outgoing edge.

Definition 4.2: A token-preserving region (TPR) is a
petri-net P that can be augmented with one simple place p̂
and a sufficient number of simple transitions and edges, to
produce a live and safe petri-net P ′ such that p̂ is the only
marked place in the initial marking (as shown in Fig. 4).

Definition 4.3: A Type-1 Petri-net is a live and safe petri-
net that marks one simple place in the initial marking. Clearly,
a Type-1 petri-net is constructed by augmenting a TPR.

d = m + n
b = m - n
if (b > 0):

a = b + c
d = e + a

x = d + 2

(a) Pseudo-code.

d1 = m + n
b = m - n
if (b > 0):

a = b + c
d2 = e + a

d3 = φ(d1,d2)
x = d3 + 2

(b) SSA form.

Fig. 6. A code fragment and its SSA form.

Definition 4.4: A Standard TPR (STPR) is a TPR con-
structed using the standard set of rules (defined below).

Definition 4.5: A Type-2 petri-net is a Type-1 petri-net
created by augmenting a Standard TPR.

Type-2 construction rules:

1) A simple place or transition is a primitive STPR.
2) A series region is an STPR formed by joining two

standard STPRs in series.
3) A connected acyclic subgraph made of STPRs, forks and

joins is itself an STPR called a fork region.
4) A connected (possibly cyclic) subgraph made of STPRs,

branches and merges is an STPR called a branch region.
5) Replacing a merge place in a branch region with parallel

merges as shown in Fig. 5(e) also results in a standard
TPR. The set of parallel merges introduced by this
replacement is called a parallel-merge region.

The Type-2 construction rules are illustrated in Fig. 5.
The branch region allows cycles in order to express arbitrary
branch and loop structures. The fork region does not allow
cycles since that introduces further conditions for liveness.
But this does not affect the expressive power of Type-2 petri-
nets. Parallel-merge regions implement the runtime selection
of values at the exit of a branch, such as variable d in Fig. 6.

V. THE SYNTHESIS FLOW

The synthesis flow uses the LLVM framework to parse and
optimise the input program. This is translated to an AHIR
specification using a CDFG as an intermediate step.

A. C to CDFG

The C program is first converted to LLVM bytecode, which
is based on the SSA form[11]. This is a purely functional
form that removes the notion of individual variables from a
program. Every assignment to a variable is a distinct value;
multiple assignments that occur in branches are handled by a
special instruction called the φ-function, as shown in Fig. 6.

The LLVM bytecode is then translated to a control data flow
graph (CDFG)[12]-[16], as shown in Fig. 7(a). The CDFG
represents instructions as nodes connected by control and data
flow edges. The edges in the CDFG arise from three kinds of
dependences in the original program:
• Data dependences that create control and data flow.
• Control structures that create control flow.
• External dependences (in storage) that create control flow.



(a) CDFG. (b) Control Path. (c) Data Path.

Fig. 7. Translating a CDFG to AHIR.

B. Generating AHIR from a CDFG

The AHIR specification is generated by piece-wise trans-
lation. Each node or edge in the CDFG is replaced by an
equivalent AHIR fragment, and the fragments are connected
to obtain the control and data paths. Fig. 7 shows the input
CDFG and the resulting AHIR specification for our example.
Elements that are obvious from the context have been hidden.
Two structures are shown in detail — a decoder element (D1)
that examines the condition for a branch, and a multiplexer
element (P1) that implements a φ-function.

C. Correctness

The method used by our synthesis flow guarantees that the
generated circuit specification is correct by construction. The
first step of translating a C program to a CDFG is a routine
one that does not need to be verified separately. The second
step of generating an AHIR specification A from the CDFG
G is shown to be correct by recovering a second CDFG G′

from A such that:

1) A is an implementation of G′.
2) G′ is isomorphic to G.

Statement (1) is true since G′ was recovered from A.
To demonstrate the isomorphism in Statement (2), we use a
simple labelling scheme as follows.

Every element (node and edge) in G is assigned a unique
label. When generating A, the labels in G are used to label
the corresponding AHIR fragments. This results in a labelled
AHIR specification A, where the fragments can be identified
by their labels. Each such fragment is replaced with a CDFG
element to obtain a new CDFG G′. Each element in G′ is
assigned a label derived from the corresponding fragment.
These labels can now be used to demonstrate that G′ is
isomorphic to the original CDFG G.

(a) A fork region

1 2 3 4 5
1 Y - Y Y Y
2 - Y - Y -
3 Y - Y Y -
4 Y Y Y Y -
5 Y - - - Y

(b) Compatibility

Fig. 8. Compatibility in a Type-2 petri-net.

VI. ARBITERLESS SHARING OF DATA-PATH OPERATORS

We describe an optimisation that reuses a data-path operator
for multiple operations that are never active at the same time.
This avoids arbitration overheads since there is no contention.
The optimisation uses an almost linear static analysis of the
control-path to identify sharing opportunities.

Definition 6.1: An operator is said to be active at a given
instant of time if and only if it has received a request, but not
yet emitted an acknowledgement.

Definition 6.2: Two operators M1 and M2 are said to be
compatible if and only if M1 does not receive a request while
M2 is active, and vice versa.

A. Compatibility in Type-2 petri-nets

In a Type-2 petri-net, compatibility of two transitions is
determined by the nature of the smallest STPR that contains
them, which we term as their nearest common ancestor (NCA).
Two operations can potentially be incompatible only if the
NCA is a fork region; operations in a branch or series NCA
region are always compatible.

Fig. 8 shows a fork region in a Type-2 petri-net with
numbered segments and their compatibility with each other.
Segments 1 and 2 are incompatible since they can execute
concurrently. But segments 1 and 4 are compatible, since a
sequence is enforced by the path through segment 3.



(a) Fork. (b) Union at a join. (c) Reduction at a join.

Fig. 9. Labelling scheme.

Definition 6.3: Two elements e1 and e2 in a Type-2 petri-
net are compatible if and only if one of the following is true:

1) their NCA is not a fork region
2) there is a path within the NCA fork region, joining the

two elements

B. Compatibility labelling

We use a labelling scheme to record the paths reaching a
petri-net element from the init transition. The labelling is a
symbolic execution of the Type-2 petri-net. Two elements can
be compared for compatibility using their labels instead.

A label is a set L = {l0, l1, . . .} where each l ∈ L is a
sequence of n label elements l = [a0, a1, . . . , an−1]. A label
element is a 3-tuple (f, k, i) made of a fork identifier f , the
fan-out k of the fork, and an index i into the fan-out. A label
element a = (f, k, i) is said to indicate the fork f .

Common operators such as equality (A = B), concatena-
tion (a.b) and prefix (a ≤ b) are defined to have sensible
meanings. The prefix operator defines a partial order on
label sequences. The longest common prefix (LCP) of two
sequences is the longest sequence that is a prefix of both the
sequences. The product of two labels (A ∗ B) is defined as
the concatenation of pairs of sequences from the two labels:
A ∗B = {a.b|∀a ∈ A,∀b ∈ B}. For convenience, the product
operator is overloaded to represent the product of a label with
a single element: A ∗ b = A ∗ {[b]}.

C. Labelling scheme

Parallel-merge regions are first reduced to simple merges,
which simplifies the labelling without affecting compatibility.
The init transition is assigned an empty label. The label of
every element is computed from its predecessors. Only forks
and joins result in a new label; other elements are assigned
the same label as their predecessors.

1) Labelling at a fork: If L is the label assigned to a fork
f with k(f) successors, then each successor si is assigned the
label L ∗

(
f, k(f), i

)
, as shown in Fig. 9(a).

2) Labelling at a join: In the general case — such as
transition m′ in Fig.8(a) — a join is assigned the union of the
labels assigned to all its predecessors, as shown in Fig. 9(b).
But when the join receives all the tokens starting from a
particular fork — such as transition m in Fig.8(a) — the union
is reduced to remove the label elements indicating that fork,
as shown in Fig. 9(c). Usually, only a subset of the union is
reduced, since paths from unrelated forks may reach a join.

The reduction at the join ensures that the labelling scheme
is “closed” — all the extensions created within a fork region

Fig. 10. Label Representation Graph.

disappear at the exit of a fork region[2]. Finally, the fin
transition is assigned an empty label.

D. Label Representation Graph (LRG)

The compatibility label is a record of every path reaching
that element from the init transition, which results in an
exponential size. Comparing two labels for compatibility also
has exponential complexity, since every sequence in one label
has to be compared with every sequence in the other label.

We eliminate the complexity by using a label representation
graph (LRG) as shown in Fig. 10. The LRG represents labels
as nodes, where edges represent the manner in which a label
is constructed from other labels. The LRG is a directed acyclic
graph with a single root node that represents the empty label.

Let l(u) be the label represented by a node u. An edge (u, v)
in the LRG may itself be labelled with a label element e, in
which case it represents the product operation l(v) = l(u) ∗ e.
If multiple incoming edges are incident at a node v, then it
represents a label that is the union of all its predecessors. In
a well-formed LRG, multiple incoming edges are incident on
a node if and only if they are all unlabelled.

The LRG is a compact representation of compatibility labels
in a Type-2 petri-net. Each path reaching a node u from the
root of the LRG represents one label sequence in the label
l(u). The following result is proved in [2].

Theorem 6.1: Two operations with labels represented by
nodes u and v in the LRG are said to be compatible, if and
only if one of the following is true:

1) There is a path from u to v or vice versa.
2) There exists a node a in the LRG, from which u and v

are reachable along non-intersecting paths such that one
of the following is true:

a) One or both paths begin with an unlabelled edge.
b) The labels on the first edges in the paths indicate

different forks.
This allows us to check two operations for compatibility

using a DFS-based algorithm defined on the LRG that is
almost linear in complexity.

E. Shared operators

We have used the LRG to implement arbiterless sharing in
the AHIR synthesis flow. We use a simple greedy algorithm
to generate cliques of pair-wise compatible operations that are



mapped to a single operator in the data-path. The incoming
data-edges are routed through multiplexers; the registers for
the outgoing data-edges are not shared.

This scheme for arbiterless sharing is quite effective in
reducing hardware costs, demonstrating support for scalable
optimisations in AHIR. Synthesis results show improvements
in the throughput-area ratio (measured in Hz / slice) in the
range of 15–190% depending on the application[2].

VII. EVALUATION OF THE END-TO-END SYNTHESIS FLOW

We have implemented a complete C-to-ASIC tool-flow
based on commercial synthesis tools from Cadence and Synop-
sys. The flow translates C programs to ASIC implementations
for the TSMC 180nm technology, using the OSU standard cell
library and CACTI models for SRAM[17]. We compare the
performance of the ASIC implementations with an industry-
standard low-power microprocessor, the Intel Atom N270.

The same set of C programs was run on the Intel Atom, and
also translated to hardware: A5/1 stream cipher, AES block
cipher, 64-point FFT, Linpack and Red-Black Trees. The delay
in each case is the time taken to finish one task specific to
that program — generating one key bit in A5/1, encrypting
one block in AES, generating one 64-point FFT, solving a
100 × 100 system in Linpack, and inserting one thousand
nodes in a Red-Black Tree. The values for area, frequency
and power dissipation for the Atom processor were obtained
from the corresponding datasheet. The measurements for the
AHIR circuits were scaled from the 180nm data to match the
45nm technology used in the Atom processor.

TABLE I
COMPARISON WITH THE INTEL ATOM N270

Area Freq Delay Power Energy
E×D

(mm2) (MHz) (ms) (mW) (µJ)
A5/1-Atom 25 1600 0.12µs 2500 298.44 nJ 35.63
A5/1-AHIR 0.10 285 0.07µs 9.22 0.61 nJ 0.04
AES-Atom 25 1600 0.036 2500 89.362 3.194
AES-AHIR 0.41 285 0.107 37.56 4.023 0.431
FFT-Atom 25 1600 0.022 2500 55.64 1.238
FFT-AHIR 0.32 180 0.035 13.11 0.464 0.016
LPK-Atom 25 1600 7.90 2500 19740 155875
LPK-AHIR 1.69 165 9.42 30.33 285 2691
RBT-Atom 25 1600 0.36 2500 891.89 318.19
RBT-AHIR 1.13 165 2.47 17.00 42.01 103.80

In Table I, we show the results of experiments that compared
the generated circuits with the Intel Atom N270 processor.
The energy used for completing a job is equivalent to the
throughput achieved for each watt of power supplied, com-
monly termed as “performance per watt”. The comparative
graph in Fig. 11(a) shows that the AHIR circuits are better
than the Intel Atom by at least an order of magnitude.

VIII. CONCLUSION

We have established a competitive pathway from high-level
programs to hardware that is correct by construction and also
scalable to large systems. The scalability is made possible by
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Fig. 11. Comparison of AHIR circuits with the Intel Atom N270

an explicit factorisation of the intermediate representation into
three components: control, data and storage. Our experiments
demonstrate that the circuits generated using our compiler
are competitive with industry-standard low-power micropro-
cessors, thus providing a scalable and efficient alternative for
implementing large systems in hardware.
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