

AHIR: from program to hardware

Sameer Sahasrabuddhe, K. Arya, M. P. Desai

Concept

● Start with a program written in a “ standard
programming language” such as C.
– Use software compiler to optimize program to

extract parallelism etc.
● Transform the program into an intermediate

representation (a virtual circuit)
– AHIR

● Map the virtual circuit to an actual logic circuit
– Optimize hardware by sharing resources etc.

Potential Value

● Replace use of embedded processors in SoCs
– Provided that generated circuits are 10X superior in

energy-delay product and/or throughput/area
metrics

● Use as part of VLSI Design Flow
– Provided that generated circuits are competitive

with conventionally designed circuits.
● Simplify the verification process considerably

– verification/validation at the program (specification)
level rather than the RTL level.

C to CDFG to AHIR

● C program translated to CDFG by compiler
tools
– LLVM tool-suite

● CDFG transformed to AHIR
– Provably correct transformation

● AHIR representation
– Orthogonal representation: CP X DP X Memory
– Each factor can be optimized without affecting the

others.

AHIR

AHIR

● Orthogonal representation
– CP X DP X Memory

● Amenable to static analysis
– e.g. Arbiterless sharing of operators in the datapath.

● Information for memory optimizations
– Data placement
– Hazard-free scheduling.

Throughput/Area metrics

● Ahir RTL mapped to FPGA vs. P-4 processor
– 2X (Linpack) to 500X (A5/1-stream cipher) better in

throughput/area metric. Typical improvement 10X
over range of applications: FFT,Red-black-
tree,AES, Linpack, A5/1.

● Ahir RTL vs. handcrafted RTL
– 360X worse for AES
– 900X worse for A5/1
– Room for improvement

Looking ahead

● Trying to quantify energy-delay benefits of
using AHIR

● Optimized memory subsystem to reduce run-
times
– Using more exact dependency rules.

● Exploiting compiler-level optimizations
● Parallel-programming languages as starting

points?
– e.g. Esterel?

Conclusion

● A complete flow from C to hardware
– Scalable, applicable to complex software.
– Competitive with processor implementations in

throughput/area
– Expected to be even more competitive if energy-

delay metric is used for comparison
● Use of parallel programming language as

starting point will get us closer to hand-crafted
RTL.

