Genius Manual

Jifi Lebl

University of lllinois, Urbana-Champaign

jirka@5z.com

Kai Willadsen

University of Queensland, Australia

kaiw@itee.uq.edu.au

Genius Manual
by Jifi Lebl and Kai Willadsen

Copyright © 1997-2009 i (George) Lebl
Copyright © 2004 Kai Willadsen

Permission is granted to copy, distribute and/or modifg tocument under the terms of the GNU Free Documentatiom&@&€GFDL), Version
1.1 or any later version published by the Free Software Fatior with no Invariant Sections, no Front-Cover Texts, aadack-Cover Texts.
You can find a copy of the GFDL at this link (ghelp:fdl) or in tiile COPYING-DOCS distributed with this manual.

This manual is part of a collection of GNOME manuals distigobiunder the GFDL. If you want to distribute this manual sefdy from the
collection, you can do so by adding a copy of the license tarthrual, as described in section 6 of the license.

Many of the names used by companies to distinguish theinymtsdand services are claimed as trademarks. Where thossrgupear in any
GNOME documentation, and the members of the GNOME DocurtientRroject are made aware of those trademarks, then theshara in
capital letters or initial capital letters.

DOCUMENT AND MODIFIED VERSIONS OF THE DOCUMENT ARE PROVIDEDNDER THE TERMS OF THE GNU FREE
DOCUMENTATION LICENSE WITH THE FURTHER UNDERSTANDING THAT

1. DOCUMENT IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTYOF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, WITHOUT LIMITATION, WARRANTIES THAT THE DOCUMENT OR MODIFIED VERSION OF THE DOCUMENT
IS FREE OF DEFECTS MERCHANTABLE, FIT FOR A PARTICULAR PURPE®R NON-INFRINGING. THE ENTIRE RISK AS TO
THE QUALITY, ACCURACY, AND PERFORMANCE OF THE DOCUMENT OR MOIFIED VERSION OF THE DOCUMENT IS
WITH YOU. SHOULD ANY DOCUMENT OR MODIFIED VERSION PROVE DEFETIVE IN ANY RESPECT, YOU (NOT THE
INITIAL WRITER, AUTHOR OR ANY CONTRIBUTOR) ASSUME THE COST ® ANY NECESSARY SERVICING, REPAIR OR
CORRECTION. THIS DISCLAIMER OF WARRANTY CONSTITUTES AN EENTIAL PART OF THIS LICENSE. NO USE OF ANY
DOCUMENT OR MODIFIED VERSION OF THE DOCUMENT IS AUTHORIZED BREUNDER EXCEPT UNDER THIS
DISCLAIMER; AND

2. UNDER NO CIRCUMSTANCES AND UNDER NO LEGAL THEORY, WHETHER TORT (INCLUDING NEGLIGENCE),
CONTRACT, OR OTHERWISE, SHALL THE AUTHOR, INITIAL WRITER, AY CONTRIBUTOR, OR ANY DISTRIBUTOR OF
THE DOCUMENT OR MODIFIED VERSION OF THE DOCUMENT, OR ANY SURFER OF ANY OF SUCH PARTIES, BE LIABLE
TO ANY PERSON FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTALOR CONSEQUENTIAL DAMAGES OF ANY
CHARACTER INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSSOF GOODWILL, WORK STOPPAGE, COMPUTER
FAILURE OR MALFUNCTION, OR ANY AND ALL OTHER DAMAGES OR LOSSES ARISING OUT OF OR RELATING TO USE
OF THE DOCUMENT AND MODIFIED VERSIONS OF THE DOCUMENT, EVENFISUCH PARTY SHALL HAVE BEEN
INFORMED OF THE POSSIBILITY OF SUCH DAMAGES.

Feedback

To report a bug or make a suggestion regarding the Geniusdvhattics Tool application or this manual, follow the direns in the GNOME
Feedback Page (ghelp:gnome-feedback).

Table of Contents

R L1 oo [1od 7o o IR PRTPPPR 1.
A =Y 1] o] = 1 1= o OSSR 2.
2.1. To Start Genius Mathematics TAQL...........uoiiiiiiiiiiiii e 2.
2.2. WHEN YOU ST GENMIUS.eieiiiiiiieeiiiiiiie ettt sttt e e s e e s et e e e e baeeeaees 2
G 2 7= 1S (o £ Vo =R 5.
0 U YT To I Lo 2 A == SR 5
3.2. TO Create a NEW PrOQIaIM..........cuuuuuueeereuuiereinrnnnennnennmnnnneeeesennsennnnnennnsnnnsnnnsnnnnnnnnnnnnnnnd 6
3.3. To Open and RUN @ PrOGIaIML.........cuiiieiieiiiiiireeeeeessssteeeessssnsneanereeaeeeessssssnerseeeeesesanns 6..
o (o) 11 o [PR PPRPUPRPRTRN 7..
4.1, LINE PIOS ... L
4.2, ParametriC PIOLS.........coooo e 8
e TS (o] o1=3 i< o [o (o) £ OO URR PP RRRTRN 9
4.4, Vectorfield PIOtS.....ccco e 10
YU - o7 =T o [£ 10
LT C 1 = I 7= 1S3 o PPN 12
LN O - 111 12
L 200 001 R AN 10T o] o= =SS 12
LTS O = To To) =T T o PSS 13
LT S T 11 o R PPPPT 14
LS 0 N | ST PRP S 14
L U 11 g To I =T T o] = 15
5.2.1. Setting VariableS........ccoiii ittt e e 15
5.2.2. BUIlt-IN Vari@bles.......ooiiiieeie e 16
5.2.3. Previous Result Variable.............ooiiiiii e 16
LR T U £ o I T 1o S 16
5.3.1. DefiNiNg FUNCHIONS. ..ottt e e e e e eeee s 17
5.3.2. Variable Argument LiStS........coiiiiiiiiiieiii et eerie e e e e er e e e e e 17
5.3.3. Passing FUNCtions t0 FUNCLONS...........ccvviiiiiiiie et 18
5.3.4. Operations 0N FUNCHOMS..........cccuuiiiiirieeesseiieeie s e e eesente e e e e e e s s snnnnnnenereeeeesennnnes 18
5.4. ADSolute Value / MOAUIUS.........cooiiiiiieiiie ettt e 19
LTI Y=o = - o SRR 19
5.6. MOAUIAr EVAIUALION.oiiiiiiiiii ittt sttt sane e e e 19
5.7. LiSt Of GEL OPEIatOLS.....cc i ieiiiiieeie e e ees ettt ittt e e et seaane e e e e e s e et e e e e e e e e snntesbeaeeeeeennnnees 20
6. Programming WIth GELooiiiii ittt ettt e e e e e s saneeee e e annne 25
00 O O] T L1110} o = £ 25
LT o o] o =TT 25
B.2. 1. WHIIE LOOPS. .. ettieeeeiei ittt ettt e e e e e ettt et e e e e e e e ennesbeeeaaneneenes 25
B.2.2. FOI LOOPS. ... ettt e e 25
6.2.3. FOraAC LOOPS ..ci i i ittt ettt e e e e e e e sean e e e enaes 26
6.2.4. Break and CONLINUE............c.vvieiiiiiieiieeiiiesiiretereerasaeeseeeesesssessaessarsrarersrsrnraanra—. 26.
6.3. SUMS AN PrOGUCESuuiiiiiiiii e s e e e e e e e e e e e e e e emeeenn s 27
6.4. COMPATISON OPEIALOLS.uttieiieiieaeee ittt ie e e e e e e e e reeeae e e e s s e bbe b e e eeaaaeasaannbesbeeeeeaessanmnees 27
6.5. Global Variables and Scope of Variahles..............iiiiiiee e 27
SR T S =] (0 1 11 T TP PRRTR TR 29

(A 2) (] (=] (o1 30

B.8. LVAIUEBS.cviiiii ettt e e e e e e e e e e e et eaeeaab e aaaes 30
7. Advanced Programming With GELcooiiiiiiiiiiiiiieae it eee e e e e 32
A% =T (o Tl = =T o [T Vo T ORI PPRPRR 32
A Lo] o] [=T S} Y 1] - PRSPPI 32
7.3. REtUINING FUNCHONS. ..ot et e e e eenee e 33
7.4.True LOCAl VariabIES........oooeiieiiiiie ettt ettt e e e e e e e ere s 34
7.5. GEL Startup PrOCEAULE..........ooiiiitei ettt ee e e e aeea s 35
A R o= o [T To [l o o o] =T 1 o 1< T RO UPPPRTRRRP 35
I = L g (=T I = U UUPPPR 37
8.1, ENLEIING IMALIICES. .. uveeiiieeeeeii ettt ee e e ee s sttt e e e ess e e e e e e e s e et e e e eeee e s e ssnnteeeeeennnnnnenes 37
8.2. Conjugate Transpose and TranSPOSE OPELatOL.........uuuirieeeeriiiiiriiieereeeeaeasrrreeeeeennanenns 38
8.3. LINEAr AlGEDIa... ... e e e e 38
9. POIYNOMIAIS IN GEL.uiviiiiiiiiiii e e e e e et e e e e e s e st e e e e e e e e s e e sssnneeeessennnnennneees 40
9.1. USING POIYNOMIAIS........cuiiiiiiiie ettt e e ee e e e e s snnnnn e e e e 40
O ST =) I =T 0] T o T PSRRI 41
O R 1T o ST £ OSSPSR 41
11. List Of GEL fUNCHONSuvviiiiiiiiiiiiiitiii e s smanaaesbavebabassbassessssnnnsnnnnnnnnsnnsnnnnnssssessesss B2
O O 011 0 1 1 F= 1 o £ 42
2 = 1 [PPSR UUPURUPRNY 43
R T == 1= 1 1= (] £ T OO PURRUPPNY 49
O 0] 4151 = 1 1 PSPPSR 54
T VU] 4T ¢ Lo PPPRUPSRR 55
G g T o] gl 41T (Y TSP PRPRT 62
11.7. NUMDBEE TREOIY. ...ttt e e e e e e e e e e e e snieeeeeseennnees 68
11.8. MatriX Manipulation..............ccuiioiiiiiiiiiie e streeee e eieeeee e e e e testeeeee e e e s eneenee e d O
11.9. LIN@AK AIGEDIA ...ttt a e e s 87
T O I @0 T o o1 g F= 1 (o [t PO PORRRSRRUPIN 102
T I A 7= 1 o1 | [1SR OP RSP 107
O o U [T 1T] - TR 113
11.13. EQUALION SOIVING ...ciiiiiiiiitiiiie ettt ee et e e e e e e ettt e e ee e e e e s e enneneeeeaaanennnes 117
I] 7 {153 1[0 TSP RPPR PP SRR 119
0 ST 01 Y/ T 1 4 = 1 SRR 122
0 GRS T =Y A I g =Y o RSP 123
11,17, MiISCEIIANEOUS........uuvvuiiririiireii et e enareebab e bbb e ab s babaa s n s nnnnssnnsnnnnnssssssnre 124
11.18. SYMbOIIC OPEIraAtiONS........ccuevvvieiiiieee e e ettt e e e e e errmee e e e e e e s e s st eee e e e e s s ennnreeeeeeeeeeaaa 125
5 0 TR o) 14 o SR 126
12. Example Programs in GEL..........coooiiiiiiiiiicice s ees s et e e et an e e e e e e e e nnnaeeeee e 131
R ST 11 o 3SR 133
0 00 I O) o 1 133
R T = = Toi 1S (o] o PO OOPPSOPPPRRPPRN 134
R TR T =T 40T o= | RSP ORPPSUPPPRRPPRN 135
R V1Y T 135
14. About Genius MathematiCS TOOL..........uuiiiiii et e e e e et e e s e e e e aaaaeaes 136

List of Figures

2-1. Genius Mathematics TOOI WINAQW............ccoiiiiiiiiiiiiiiceeeeee e 2.
B O (== (=3 o (o] ALY/ o [0 Y PPN 7
e 1o | ALY 1 s o [0 YR 7.
4-3. ParametriC PlOt Tah........oooiiiiii ettt eraaeaaaeae s 8
A-4, ParametriC PlOL........ooiiiiiiiiiiieiiieie ettt eeeeae e e eeeeesaesaaeeseesbaesba e baasbaas s s nnnmnssesssesraearrrnbnreres 9.
A-5, SUIACE PlOL ... e 10

Chapter 1. Introduction

The Genius Mathematics Tool application is a general catoufor use as a desktop calculator, an
educational tool in mathematics, and is useful even forarese The language used in Genius
Mathematics Tool is designed to be ‘mathematical’ in thesedhat it should be ‘what you mean is what
you get'. Of course that is not an entirely attainable go&ni@s Mathematics Tool features rationals,
arbitrary precision integers and multiple precision flaatmg the GMP library. It handles complex
numbers using cartesian notation. It has good vector andxmaénipulation and can handle basic linear
algebra. The programming language allows user definediins;tvariables and modification of
parameters.

Genius Mathematics Tool comes in two versions. One versitima graphical GNOME version, which
features an IDE style interface and the ability to plot fumes of one or two variables. The command
line version does not require GNOME, but of course does nptément any feature that requires the
graphical interface.

This manual describes mostly the graphical version of thautor, but the language is of course the
same. The command line only version lacks the graphing dipeand all other capabilities that
require the graphical user interface.

Chapter 2. Getting Started

2.1. To Start Genius Mathematics Tool

You can start Genius Mathematics Tool in the following ways:

Applications menu

Depending on your operating system and version, the memufgeGenius Mathematics Tool
could appear in a number of different places. It can be irEtthécation, Accessories, Office,
Science, or similar submenu, depending on your particular setup.mknu item name you are
looking for isGenius Math Tool. Once you locate this menu item click on it to start Genius
Mathematics Tool.

Run dialog
Depending on your system installation the menu item may a@Mailable. If it is not, you can open
the Run dialog and execugmome-genius

Command line

To start the GNOME version of Genius Mathematics Tool exegnome-geniugrom the
command line.

To start the command line only version, execute the follgommandgenius This version does
not include the graphical environment and some functityalich as plotting will not be available.

2.2. When You Start Genius

When you start the GNOME edition of Genius Mathematics Tl ,window pictured irFigure 2-1is
displayed.

Chapter 2. Getting Sarted

Figure 2-1. Genius Mathematics Tool Window

The Genius Mathematics Tool window contains the followiteyeents:

Menubar.

The menus on the menubar contain all of the commands thatead to work with files in Genius
Mathematics Tool. Th&ile menu contains items for loading and saving items and crgatw
programs. Théoad and Run... command does not open a new window for the program, but just
executes the program directly. It is equivalent toltteed command.

The Calculator menu controls the calculator engine. It allows you to rundineently selected
program or to interrupt the current calculation. You camw &®k at the full expression of the last
answer (useful if the last answer was too large to fit onto tresale), or you can view a listing of
the values of all user defined variables. Finally it allowstfphg functions using a user friendly
dialog box.

The other menus have same familiar functions as in otheications.

Toolbar.

The toolbar contains a subset of the commands that you cassafom the menubar.

Working area

The working area is the primary method of interacting witéa #ipplication.

The working area initially has just th@onsole tab which is the main way of interacting with the
calculator. Here you type expressions and the results anedrately returned after you hit the
Enter key.

Alternatively you can write longer programs and those cgeapin separate tabs and can be stored
in files for later retrieval.

Chapter 2. Getting Sarted

Chapter 3. Basic Usage

3.1. Using the Work Area

Normally you interact with the calculator in tl@onsole tab of the work area. If you are running the text
only version then the console will be the only thing that iaiable to you. If you want to use Genius
Mathematics Tool as a calculator only, just type in your esgion here and it willg et evaluated.

Type your expression into tHeonsole work area and press enter and the expression will be evdluate
Expressions are written in a language called GEL. The mogilsi GEL expression just looks like
mathematics. For example

geni us> 3070 + 6773.0 + In(7) * (88.8/100)
or

geni us> 62734 + 812634 + 77"4 nod 5

or

genius> | sin(37) - er7

or

genius> sumn=1 to 70 do 1/n

(Last is the harmonic sum from 1 to 70)

To get a list of functions and commands, type:

geni us> hel p

If you wish to get more help on a specific function, type:
geni us> hel p Functi onNane

To view this manual, type:

geni us> manua

Suppose you have previously saved some GEL commands asramrtma file and you now want to
execute them. To load this program from the fite h/ t o/ pr ogr am gel , type

geni us> | oad path/to/program ge

Chapter 3. Basic Usage

Genius Mathematics Tool keeps track of the current dirgciar list files in the current directory tyds,
to change directory dod di rect ory as in the unix command shell.

3.2. To Create a New Program

To start writing a new program, choobde—New Program. A new tab will appear in the work area.
You can write &GEL program in this work area. Once you have written your progyamcan run it by
Calculator—Run. This will execute your program and will display any outpuattbeConsole tab.
Executing a program is equivalent of taking the text of thegpam and typing it into the console. The
only difference is that this input is done independent ofdbesole and just the output goes onto the
console Calculator— Run will always run the currently selected program even if yoei@n the
Console tab. The currently selected program has its tab in bold tJpeelect a program, just click on
its tab.

To save the program you've just written, cho@sle — Save As...

3.3. To Open and Run a Program

To open afile, chooseile—Open. A new tab containing the file will appear in the work area. 6am
use this to edit the file.

To run a program from a file, choose—Load and Run.... This will run the program without
opening it in a separate tab. This is equivalent tol¢lael command.

Chapter 4. Plotting

Plotting support is only available in the graphical GNOMEsien. All plotting accessible from the
graphical interface is available from tleate Plot window. You can access this window by either
clicking on thePlot button on the toolbar or selectiijot from theCalculator menu. You can also
access the plotting functionality by using thietting functionsof the GEL language. Seghapter 50
find out how to enter expressions that Genius understands.

4.1. Line Plots

To graph real valued functions of one variable openGheate Plot window. You can also use the
Li nePl ot function on the command line (see its documentation).

Once you click thé?lot button, a window opens up with some notebooks in it. You waitet in the
Function line plot notebook tab, and inside you want to be onFouactions / Expressions notebook

tab. Sed-igure 4-1

Figure 4-1. Create Plot Window

Function |ine plot | Suface plot

Eunctions | Exprassions | Parametric

1n function names or expressons Ivilng the x
bomes Balow to graph theem

314158 = tor [3.141%9

¥ from: |-1.10000 12| tor |110000

se || plat

Into the text boxes just type in expressions whergthe independent variable. You can also just give
names of functions such ass rather then having to typeos(x) . You can graph up to ten functions. If
you make a mistake and Genius cannot parse the input it wilifsi this with a warning icon on the right
of the text input box where the error occurred, as well angiyiou an error dialog. You can change the
ranges of the dependent and independent variables in ttenbpart of the dialog. Pressing tRéot
button produces the graph showrFigure 4-2

Chapter 4. Plotting

Figure 4-2. Plot Window

Graph Zoom

From here you can print out the plot, create encapsulatadgqgs or a PNG version of the plot or
change the zoom. If the dependent axis was not set corremilggn have Genius fit it by finding out the
extrema of the graphed functions.

For plotting using the command line see the documentationedfi nePl ot function.

4.2. Parametric Plots

In the create plot window, you can also chooseRaeametric notebook tab to create two dimensional
parametric plots. This way you can plot a single parametiicfion. You can either specify the points as
x andy, or giving a single complex number. S&gure 4-3

Chapter 4. Plotting

Figure 4-3. Parametric Plot Tab

Function fine plat | Sudace plw':'|

Eunctions | Expressions I Barametric |

Type In function names or exprassions ivolng the T vanable
i the beoes betow ta graph them, Either fill in bath bases vwith
%= and y= in front of thems ghing the x and y canrdinates
saparately, ar altarnatively fill in the 7 box giing x and y as
the real and imaginary part of 8 complas rumber.

= | sifd2opiet) | @
y= | coslvpitt] | @
o
F

> i L i
Parameter tfrom: 000000 =l te: 100000 |—,! by |0.01000 1=

ot Window

% from{ |-1.10000 2| tor {1.10000 18]

¥ frem: |-1.10000 i‘,-! tor | 110000

Plat

X ciose | [

An example of a parametric plot is givenkilgure 4-3 Similar operations can be done on such graphs as
can be done on the other line plots. For plotting using themand line see the documentation of the
Li nePl ot Paramet ri c orLi nePl ot CPar anet ri ¢ function.

Figure 4-4. Parametric Plot

- Hlot |l
Graph Zoom
1.t 0.8 B0 0.5 1.0
T T T T T
1o
o8 -
0.0 |
<05 |
1.0

4.3. Slopefield Plots

In the create plot window, you can also chooseStape field notebook tab to create a two dimensional
slope field plot. Similar operations can be done on such grapltan be done on the other line plots. For
plotting using the command line see the documentation o$tlo@ef i el dPl ot function.

Chapter 4. Plotting

When a slope field is active, there is an eX@@ver menu available, through which you can bring up the
solver dialog. Here you can have Genius plot specific salstfor the given initial conditions. You can
either specify initial conditions in the dialog, or you cditk on the plot directly to specify the initial
point. While the solver dialog is active, the zooming by kiig and dragging does not work. You have
to close the dialog first if you want to zoom using the mouse.

The solver uses the standard Runge-Kutta method. The pilbttay on the screen until cleared. The
solver will stop whenever it reaches the boundary of thewlotlow. Zooming does not change the
limits or parameters of the solutions, you will have to clead redraw them with appropriate
parameters. You can also use Bi@pef i el dDr awSol ut i on function to draw solutions from the
command line or programs.

4.4. Vectorfield Plots

In the create plot window, you can also choose\ketor field notebook tab to create a two dimensional
vector field plot. Similar operations can be done on suchlig@s can be done on the other line plots.
For plotting using the command line see the documentatiohedfect or f i el dPI ot function.

By default the direction and magnitude of the vector fielchisvgn. To only show direction and not the
magnitude, check the appropriate checkbox to normalizartosv lengths.

When a vector field is active, there is an ex@@ver menu available, through which you can bring up
the solver dialog. Here you can have Genius plot specifidisolsifor the given initial conditions. You
can either specify initial conditions in the dialog, or yanalick on the plot directly to specify the
initial point. While the solver dialog is active, the zoomihy clicking and dragging does not work. You
have to close the dialog first if you want to zoom using the reous

The solver uses the standard Runge-Kutta method. The pilbstay on the screen until cleared.
Zooming does not change the limits or parameters of theisakityou will have to clear and redraw
them with appropriate parameters. You can also us&¢heor f i el dDr awSol ut i on function to draw
solutions from the command line or programs.

4.5. Surface Plots

Genius can also plot surfaces. Select$ueface plot tab in the main notebook of thereate Plot
window. Here you can specify a single expression which shosé eithek andy as real independent
variables oz as a complex variable (whesxeis the real part of andy is the imaginary part). For
example to plot the modulus of the cosine function for compl@rameters, you could enfetos(z) | .
This would be equivalent tbcos(x+1i *y) | . SeeFigure 4-5 For plotting using the command line see
the documentation of theur f acePl ot function.

10

Figure 4-5. Surface Plot

Graph Zoom Wew

Bl
154
1,434
1,324

3
L

Chapter 4. Plotting

11

Chapter 5. GEL Basics

GEL stands for Genius Extension Language. It is the langyageise to write programs in Genius. A
program in GEL is simply an expression that evaluates to abmunGenius Mathematics Tool can
therefore be used as a simple calculator, or as a powerfulgtieal research tool. The syntax is meant to
have as shallow of a learning curve as possible, espectllyse as a calculator.

5.1. Values

Values in GEL can baumbersBoolean9r strings Values can be used in calculations, assigned to
variables and returned from functions, among other uses.

5.1.1. Numbers

Integers are the first type of number in GEL. Integers are@vriin the normal way.

1234

Hexidecimal and octal numbers can be written using C natakor example:

0x123ABC
01234

Or you can type numbers in an arbitrary base usisgse>\ <nunber >. Digits higher than 10 use letters
in a similar way to hexadecimal. For example, a number in B8seould be written:

23\ 1234ABCD

The second type of GEL number is rationals. Rationals arplgiachieved by dividing two integers. So
one could write:

34

to get three quarters. Rationals also accept mixed fractoation. So in order to get one and three
tenths you could write:

1 3/10

The next type if number is floating point. These are enteredsimilar fashion to C notation. You can
USeE, e or @as the exponent delimiter. Note that using the exponentiteli gives a float even if there
is no decimal point in the number. Examples:

12

Chapter 5. GEL Basics

1.315

7.887e77

7.887e-77

.3

0.3

77e5

When Genius prints a floating point number it will always apga. 0 even if the number is whole. This
is to indicate that floating point numbers are taken as impeeguantities. When a number is written in
the scientific notation, it is always a floating point numbd $hus Genius does not print the.

The final type of number in gel is the complex numbers. You caarea complex number as a sum of
real and imaginary parts. The imaginary part ends with.afere are examples of entering complex
numbers:

1+2i

8. 01i
77+eM(1. 3i)

Important: When entering imaginary numbers, a number must be in front of the i . If you use i by
itself, Genius will interpret this as referring to the variable i . If you need to referto i by itself, use 1i
instead.

In order to use mixed fraction notation with imaginary numbers you must have the mixed fraction in
parentheses. (i.e., (1 2/5)i)

5.1.2. Booleans

Genius also supports native Boolean values. The two Boaeastants are defined asue andf al se;
these identifiers can be used like any other variable. Yowatsnuse the identifief& ue, TRUE, Fal se
andFALSE as aliases for the above.

At any place where a Boolean expression is expected, yousesa Boolean value or any expression that
produces either a number or a Boolean. If Genius needs taaesh number as a Boolean it will
interpret 0 a$ al se and any other number as ue.

In addition, you can do arithmetic with Boolean values. Baraple:

((1 +true) - false) * true

is the same as:

((true or true) or not false) and true

13

Chapter 5. GEL Basics

Only addition, subtraction and multiplication are suppdrtif you mix numbers with Booleans in an
expression then the numbers are converted to Booleans@#bdeksabove. This means that, for example:

1 ==true

always evaluates tor ue since 1 will be converted tor ue before being compared to ue.

5.1.3. Strings

Like numbers and Booleans, strings in GEL can be stored agsahside variables and passed to
functions. You can also concatenate a string with anothleevasing the plus operator. For example:

a=2+3;"The result is: "+a
will create the string:
The result is: 5

You can also use C-like escape sequences such,as,\ b,\\aand\r. Togeta or" into the string you
can quote it with & . For example:

"Slash: \\ Quotes: \" Tabs: \t1\t2\t3"
will make a string:

Slash: \ Quotes: " Tabs: 1 2 3

In addition, you can use the library functienr i ng to convert anything to a string. For example:
string(22)

will return

noon

Strings can also be compared with (equal),! = (not equal) ané&=> (comparison) operators

5.1.4. Null

There is a special value called! | . No operations can be performed on it, and nothing is printeen
it is returned. Thereforeaul | is useful when you do not want output from an expression. HEheev
nul I can be obtained as an expression when you typlee contantul | or nothing. By nothing we
mean that if you end an expression with a separatdris equivalent to ending it with a separator
followed by anul | .

14

Chapter 5. GEL Basics

Example:

xX X
11l

Some functions returnul I when no value can be returned or an error happened.rlsb is used as
an empty vector or matrix, or an empty reference.

5.2. Using Variables

Syntax:
Vari abl eName
Example:

geni us> e
= 2.71828182846

To evaluate a variable by itself, just enter the name of thilke. This will return the value of the
variable. You can use a variable anywhere you would normesliya number or string. In addition,
variables are necessary when defining functions that tajkevaents (seSection 5.3.1

Using Tab completion: You can use Tab completion to get Genius to complete variable names for
you. Try typing the first few letters of the name and pressing Tab.

Variable names are case sensitive: The names of variables are case sensitive. That means that
variables named hel | o, HELLO and Hel | o are all different variables.

5.2.1. Setting Variables

Syntax:

<identifier> = <val ue>
<identifier> := <val ue>
Example:

15

Chapter 5. GEL Basics

To assign to a variable, use th@r : = operators. These operators set the value of the variablectunth
the number you set, so you can do things like

The=and: = operators can both be used to set variables. The differexteeebn them is that the=
operator always acts as an assignment operator, whereasffegator may be interpreted as testing for
equality when used in a context where a Boolean expressmxpiscted.

For issues regarding the scope of variables Sesion 6.5

5.2.2. Built-in Variables

GEL has a number of built-in ‘variables’, sucheoi or Gol denRat i 0. These are widely used
constants with a preset value, and they cannot be assigmedahges. There are a number of other
built-in variables. Se&ection 11.4or a full list.

5.2.3. Previous Result Variable

TheAns andans variables can be used to get the result of the last expressomrexample, if you had
performed some calculation, to add 389 to the result youdcdal

Ans+389

5.3. Using Functions

Syntax:
Functi onNane(argunentl, argument2, ...)
Example:

Factorial (5)

16

Chapter 5. GEL Basics

cos(2xpi)
gcd(921, 317)

To evaluate a function, enter the name of the function, ¥edid by the arguments (if any) to the function
in parentheses. This will return the result of applying tivection to its arguments. The number of
arguments to the function is, of course, different for eaaicfion.

There are many built-in functions, suchsis, cos andt an. You can use thael p built-in function to
get a list of available functions, or s€&hapter 1%¥or a full listing.

Using Tab completion: You can use Tab completion to get Genius to complete function names for
you. Try typing the first few letters of the name and pressing Tab.

Function names are case sensitive: The names of functions are case sensitive. That means that
functions named dosonet hi ng, DOSOVETHI NG and DoSonet hi ng are all different functions.

5.3.1. Defining Functions

Syntax:

function <identifier>(<conma separated argunents>) = <function body>
<identifier> = (‘() = <function body>)

The* is the backquote character, and signifies an anonymouddan&y setting it to a variable name
you effectively define a function.

A function takes zero or more comma separated argumentseturas the result of the function body.
Defining your own functions is primarily a matter of convamie; one possible use is to have sets of
functions defined in GEL files which Genius can load in ordentike available. Example:

function addup(a, b,c) = a+b+c

thenaddup(1, 4, 9) yields 14

5.3.2. Variable Argument Lists

If you include. . . after the last argument name in the function declaratiam tBenius will allow any
number of arguments to be passed in place of that argumertt.dfguments were passed then that
argument will be set taul | . Otherwise, it will be a horizontal vector containing aletarguments. For
example:

function f(a,b...) = b

17

Chapter 5. GEL Basics

Thenf (1, 2, 3) yields[2, 3], whilef (1) yields anul I .

5.3.3. Passing Functions to Functions

In Genius, it is possible to pass a function as an argumemtdthar function. This can be done using
either ‘function nodes’ or anonymous functions.

If you do not enter the parentheses after a function namieadf being evaluated, the function will
instead be returned as a ‘function node’. The function n@ateticen be passed to another function.
Example:

function f(a,b) = a(b)+1;
function b(x) = x*x;
f(b, 2)

If you want to pass a function that doesn't exist yet, you caman anonymous function (see
Section 5.3.1

Syntax:

function(<comra separated arguments>) = <function body>
‘(<commua separated argunments>) = <function body>

Example:

function f(a,b) = a(b)+1;
f('(x) = x*x,2)

5.3.4. Operations on Functions

Some functions allow arithmetic operations, and some siagjument functions such asp orl n, to
operate on the function. For example,

exp(si nxcos+4)
will return a function that does
exp(si n(x)*cos(x)+4)

This can be useful when quickly defining functions. For exknte create a function to perform the
above operation, you can just type:

f = exp(sinxcos+4)

This can also be used in plotting. For example, to plot sirasegiyou can enter:

18

Chapter 5. GEL Basics

Li nePl ot (si n"2)

Warning

Not all functions can be used in this way. In addition, when you use a binary
operation the functions must take the same arguments.

5.4. Absolute Value / Modulus

You can make an absolute value of something by putting tharound it. For example:

| a- bj

In case the expression is a complex number the result wilhéertodulus (distance from the origin). For
example] 3 * e~(1li+pi)| returns 3.

5.5. Separator

In GEL if you want to type more than one command you have to hesg bperator, which is a way to
separate expressions, such a combined expression wilhnehatever is the result of the last one, so
suppose you type the following:

3: 5

This expression will yield 5.

This will require some parenthesizing to make it unambigueametimes, especially if theis not the
top most primitive. This slightly differs from other prognming languages where thds a terminator

of statements, whereas in GEL it's actually a binary oper#tgou are familiar with pascal this should
be second nature. However genius can let you pretend it isrartator somewhat, if a is found at the
end of a parenthesis or a block, genius will itself appendlbndle to it as if you would have written
;nul | . This is usefull in case you do not want to return a value frasnaloop, or if you handle the
return differently. Note that it will slightly slow down theode if it is executed too often as there is one
more operator involved.

19

Chapter 5. GEL Basics

5.6. Modular Evaluation

Sometimes when working with large numbers, it might be fagtesults are modded after each
calculation. To use it you just add "mod <integer>" afterélpression. Example:

27(5!) = 37(6!) nod 5

You can calculate the inverses of numbers mod some integesbysing rational numbers (of course
the inverse has to exist). Examples:

10"-1 nod 101
1/10 nod 101

You can also do modular evaluation with matrices includadgrtg inverses, powers and dividing.
Example:

A=112;34]
B=A-1nod5
A«B mod 5

This should yield the identity matrix as B will be the inverfeA mod 5.

Some functions such agrt orl og work in a different way when in modulo mode. These will then
work like their discrete versions working within the ringiofegers you selected. For example:

geni us> sqrt(4) nod 7

[2, 5]

geni us> 2*2 nmod 7

=4

sqrt will actually return all the possible square roots.

5.7. List of GEL Operators

As everything in gel is really just an expression, it is ne@list all connected together with operators.
Here is a list of the operators in GEL.
a; b

The separator, just evaluates batandb, but returns only the result af.

a=b

The assignment operator. This assigrs a (a must be a validvalue) (note however that this
operator may be translated+e if used in a place where boolean expression is expected)

20

Chapter 5. GEL Basics

a: =b

The assignment operator. Assign® a (a must be a validvalue). This is different from= because
it never gets translated to=a.

| al
Absolute value or modulus (& is a complex number).
See Mathworld (http://mathworld.wolfram.com/Absolugdie.html) for more information.
a”b
Exponentiation, raises to thebth power.
a.b
Element by element exponentiation. Raise each element aftiaxma to thebth power. Or ifb is a
matrix of the same size as then do the operation element by elemena i§ a number and is a
matrix then it creates matrix of the same sizé agith a raised to all the different powers in
atb
Addition. Adds two numbers, matrices, functions or strirlfgou add a string to anything the
result will just be a string.
a-b
Subtraction. Subtract two numbers, matrices or functions.
axb
Multiplication. This is the normal matrix multiplication.
a.*b
Element by element multiplication & andb are matrices.
alb
Division.
a./b
Element by element division.
a\b
Back division. That is this is the same@sa.
a.\b

Element by element back division.

21

Chapter 5. GEL Basics

a%
The mod operator. This does not turn on thedular modebut just returns the remainderafb.
a. %
Element by element the mod operator. Returns the remaiadé@erelement by elemeat / b.
a nod b
Modular evaluation operator. The expressiois evaluated modulb. SeeSection 5.6Some
functions and operators behave differently modulo an irteg
a
Factorial operator. This is likex. . . *(n-2) *(n- 1) *n.
al!
Double factorial operator. This is likex. . . *(n-4) *(n-2) *n.
a==b
Equality operator (returnisr ue or f al se).
al =b
Inequality operator, returrntg ue if a does not equd else returngal se.
a<>b
Alternative inequality operator, returnsue if a does not equdl else returngal se.
a<=b
Less than or equal operator, retutnsie if a is less than or equal toelse returng al se.
a>=b
Greater than or equal operator, returnse if a is greater than or equal toelse returng al se.
a<=>b
Comparison operator. is equal tao it returns 0, ifa is less tham it returns -1 and it is greater
thanb it returns 1.
a and b
Logical and.
aorb
Logical or.

22

Chapter 5. GEL Basics

a xor b

Logical xor.

not a

Logical not.

Negation operator.

&a

Variable referencing (to pass a reference to something)S8etion 6.7

*a

Variable dereferencing (to access a referenced varibée)S8ction 6.7

Matrix conjugate transpose.

Matrix transpose, does not conjugate the entries.

a@b, c)
Get element of a matrix in row and columrc. If b, ¢ are vectors, then this gets the corresponding
rows columns or submatrices.

a@hb,)
Get row of a matrix (or rows ib is a vector).

a@b, :)

Same as above.

a@, c)
Get column of a matrix (or columnsdfis a vector).

a@:,c)

Same as above.

a@b)
Get an element from a matrix treating it as a vector. ThistralVerse the matrix row-wise.

23

Chapter 5. GEL Basics

a:b
Build a vector froma to b (or specify a row, column region for th@operator). For example to get
rows 2 to 4 of mamtrixA we could do
A@2: 4,)

as2: 4 will return a vectoq 2, 3, 4] .

a:b:c
Build a vector froma to ¢ with b as a step. That is for example
genius> 1:2:9

‘[1, 3, 5, 7, 9]

(a)i

Make a imaginary number (multiply by the imaginary). Note that normally the numlbas
written asli . So the above is equal to

(@) *1i

Quote an identifier so that it doesn’t get evaluated. Or qaatmtrix so that it doesn't get expanded.

Note: The @() operator makes the : operator most useful. With this you can specify regions of a
matrix. So that a@(2:4,6) is the rows 2,3,4 of the column 6. Or a@(,1:2) will get you the first two
columns of a matrix. You can also assign to the @() operator, as long as the right value is a matrix
that matches the region in size, or if it is any other type of value.

Note: The comparison operators (except for the <=> operator which behaves normally), are not
strictly binary operators, they can in fact be grouped in the normal mathematical way, e.g.:
(1<x<=y<5) is a legal boolean expression and means just what it should, that is (1<x and x<y and

y<5)

Note: The unitary minus operates in a different fashion depending on where it appears. If it appears
before a number it binds very closely, if it appears in front of an expression it binds less than the
power and factorial operators. So for example - 17k is really (- 1) ~k, but - f oo(1) 7k is really

- (foo(1)”k). So be careful how you use it and if in doubt, add parentheses.

24

Chapter 6. Programming with GEL

6.1. Conditionals

Syntax:
i f <expressionl> then <expression2> [el se <expressi on3>]

If el se is omitted, then if thexpr essi on1 yieldsf al se or O,NULL is returned.

Examples:

i f(a==5)then(a=a-1)

if b<a then b=a

if ¢>0 then c=c-1 else c=0

a=(if b>0 then b else 1)

Note that= will be translated te== if used inside the expression fof, so
if a=5 then a=a-1

will be interpreted as:

if a==5 then a:=a-1

6.2. Loops

6.2.1. While Loops

Syntax:

whi | e <expressionl> do <expression2>
until <expressionl> do <expression2>
do <expression2> while <expressionl>
do <expression2> until <expressionl>

These are similiar to other languages, however they reh@ngsult of the last iteration otULL if no
iteration was done. In the boolean expressiois, translated inte= just as for the f statement.

25

Chapter 6. Programming with GEL

6.2.2. For Loops

Syntax:

for <identifier> = <fronr to <to> do <body>
for <identifier> = <fronr to <to> by <increnent> do <body>

Loop with identifier being set to all values fronfir o to <t 0>, optionally using an increment other
than 1. These are faster, nicer and more compact than theahlmops such as above, but less flexible.
The identifier must be an identifier and can’t be a dereferefoe value of identifier is the last value of
identifier, or<f r on» if body was never evaluated. The variable is guaranteed ioitigdized after a

loop, so you can safely use it. Also ther on, <t 0> and<i ncr ement > must be non complex values.
The<t o> is not guaranteed to be hit, but will never be overshot, fanegle the following prints out odd
numbers from 1 to 19:

for i =1 to 20 by 2 do print(i)

6.2.3. Foreach Loops

Syntax:
for <identifier>in <matrix> do <body>

For each element, going row by row from left to right do the yadia print numbers 1,2,3 and 4 in this
order you could do:

for nin [1,2:3,4] do print(n)

If you wish to run through the rows and columns of a matrix, gan use the RowsOf and ColumnsOf
functions which return a vector of the rows or columns of thenr. So,

for nin RowsOf ([1,2:3,4]) do print(n)

will print out [1,2] and then [3,4].

6.2.4. Break and Continue

You can also use ther eak andcont i nue commands in loops. The continoent i nue command will
restart the current loop at its next iteration, while bheak command exits the current loop.

whi | e(<expressionl>) do (
i f (<expression2>) break
el se if(<expression3>) continue;
<expr essi on4>

)

26

Chapter 6. Programming with GEL

6.3. Sums and Products

Syntax:

sum <identifier> = <from> to <to> do <body>

sum <identifier> = <from> to <to> by <increnent> do <body>
sum <identifier>in <matri x> do <body>

prod <identifier> = <fronm> to <to> do <body>

prod <identifier> = <fronk to <to> by <increnent> do <body>
prod <identifier>in <matrix> do <body>

If you substitutef or with sumor pr od, then you will get a sum or a product instead dfa loop.
Instead of returning the last value, these will return tha su the product of the values respectively.

If no body is executed (for exampé&m i =1 to 0 do ...)thensumreturns O angr od returns 1 as
is the standard convention.

6.4. Comparison Operators

The following standard comparison operators are suppart€tEL and have the obvious meaning:,

>=, <=, 1=<> <,> Theyreturn rue orf al se. The operators= and<> are the same thing and mean
"is not equal to". GEL also supports the operater, which returns -1 if left side is smaller, 0 if both
sides are equal, 1 if left side is larger.

Normally = is translated te= if it happens to be somewhere where GEL is expecing a condstich as
in the if condition. For example

if a=b then c
if a==b then c

are the same thing in GEL. However you should reallyxrser : = when you want to compare or assign
respectively if you want your code to be easy to read and talaucstakes.

All the comparison operators (except for the> operator which behaves normally), are not strictly
binary operators, they can in fact be grouped in the norméhemaatical way, e.g.1kx<=y<5) is a legal
boolean expression and means just what it should, that isdfhe x<y and y<5)

To build up logical expressions use the wonds , and, or , xor . The operatorsr andand are special
beasts as they evaluate their arguemnts one by one, so taldnikufor conditional evaluation works
here as well. For example, or a=1 will not seta=1 since the first argument was true.

27

Chapter 6. Programming with GEL

6.5. Global Variables and Scope of Variables

Like most programming languages, GEL has different typesdfbles. Normally when a variable is
defined in a function, it is visible from that function andrnall functions that are called (all higher
contexts). For example, suppose a functiatefines a variable and then calls functiog. Then
functiong can reference. But oncef returns, the variable goes out of scope. This is where GEL
differs from a language such as C. One could describe vasats being semi global in a sense For
example, the following code will print out 5. The functigreannot be called on the top level (outside
asa will not be defined).

function f()
function g()

f();

(a:=5; g());
print(a);

If you define a variable inside a function it will override avgriables defined in calling functions. For
example, we modify the above code and write:

function f()
function g()
a: =10;

f();

(a:=5; 9());
print(a);

This code will still print out 5. But if you caly outside off then you will get a printout of 10. Note that
settinga to 5 insidef does not change the valueaft the top (global) level, so if you now check the
value ofa it will still be 10.

Function arguments are exactly like variables defined ésie function, except that they are initialized
with the value that was passed to the function. Other thaybiint, they are treated just like all other
variables defined inside the function.

Functions are treated exactly like variables. Hence youazally redefine functions. Normally (on the
top level) you cannot redefine protected variables and fomst But locally you can do this. Consider
the following session:

geni us> function f(x)
= (" (x)=(sin(x)"2))
genius> function f(x) = sin(x)"2

= (" (x)=(sin(x)"2))

genius> function g(x) = ((function sin(x)=x"10);f(x))
= (" (x)=((sin:=("(x)=(x"10)));f(x)))

geni us> g(10)

= 1e20

sin(x)"2

28

Chapter 6. Programming with GEL

Functions and variables defined at the top level are coresidgiobal. They are visible from anywhere.
As we said the following functiof will not change the value af to 5.

a=6;
function f() = (a:=5);
()

Sometimes, however, it is neccessary to set a global varfedih inside a function. When this behaviour
is needed, use theet function. Passing a string or a quoted identifier to this fiomcsets the variable
globally (on the top level). For example, to setio the value 3 you could call:

set(‘a, 3)
or:
set("a", 3)

Theset function always sets the toplevel global. There is no wayetadocal variable in some function
from a subroutine. If this is required, must use passing fareace.

So to recap in a more technical language: Genius operatesliffierent numberred contexts. The top
level is the context O (zero). Whenever a function is entetfezlcontext is raised, and when the function
returns the context is lowered. A function or a variable vgagls visible from all higher numbered
contexts. When a variable was defined in a lower numbere@xgdrtihen setting this variable has the
effect of creating a new local variable in the current contember and this variable will now be visible
from all higher numbered contexts.

There are also true local variables which are not seen frowlaere but the current context. Also when
returning functions by value it may reference variablesvwigible from higher context and this may be a
problem. See the sectiofisue Local VariableandReturning Functions

6.6. Returning

Normally a function is one or several expressions sepatatedsemicolon, and the value of the last
expression is returned. This is fine for simple function$,dmmetimes you do not want a function to
return the last thing calculated. You may, for example, viameturn from a middle of a function. In this
case, you can use thet ur n keyword.r et ur n takes one argument, which is the value to be returned.

Example:
function f(x) = (
y=1

while true do (
if x>50 then return y;

29

Chapter 6. Programming with GEL

y=y+1;
X=x+1

6.7. References

It may be neccessary for some functions to return more tharvalue. This may be accomplished by
returning a vector of values, but many times it is convenienise passing a reference to a variable. You
pass a reference to a variable to a function, and the funeatilbeet the variable for you using a
dereference. You do not have to use references only for thigose, but this is their main use.

When using functions which return values through refersiirtéhe argument list, just pass the variable
name with an ampersand. For example the following code withgute an eigenvalue of a matiwith
initial eigenvector guess, and store the computed eigenvector into the variable named

Rayl ei ghQuotientlteration (A x,0.001, 100, &)

The details of how references work and the syntax is similéné C language. The operagreferences
a variable and dereferences a variable. Both can only be applied to anifanso= = a is not a legal
expression in GEL.

References are best explained by an example:
a=1;

b=&a;

*p=2;

now a contains 2. You can also reference functions:
function f(x) = x+1;

t =&f ;

*t(3)

gives us 4.

30

Chapter 6. Programming with GEL

6.8. Lvalues

An Ivalue is the left hand side of an assignment. In other woad Ivalue is what you assign something
to. Valid Ivalues are:

Identifier. Here we would be setting the varable of name

*a

Dereference of an identifier. This will set whatever varabpoints to.

a@ <regi on>)

A region of a matrix. Here the region is specified normally @& he regular @() operator, and can
be a single entry, or an entire region of the matrix.

Examples:

a: =4

*tnp = 89
a@1l,1) :=5
a@4:8,3) :=[1,2,3,4,5]

Note that both = and= can be used interchangably. Except if the assignment appearcondition. It is
thus always safer to just use when you mean assignment, asrlwhen you mean comparison.

31

Chapter 7. Advanced Programming with GEL

7.1. Error Handling

If you detect an error in your function, you can bail out oFitr normal errors, such as wrong types of
arguments, you can fail to compute the function by addingthgemenbai | out . If something went
really wrong and you want to completely kill the current cartgiion, you can usexcept i on.

For example if you want to check for arguments in your funttiou could use the following code.

function f(M = (
if not Ishvatrix (M then (
error ("Mnot a matrix!");
bai | out

)

7.2. Toplevel Syntax

The synatax is slightly different if you enter statementstantop level versus when they are inside
parentheses or inside functions. On the top level, enterthetsame as if you press return on the
command line. Therefore think of programs as just sequehloges as if were entered on the command
line. In particular, you do not need to enter the separattireaénd of the line (unless it is of course part
of several statements